Medineweb Forum/Huzur Adresi

Medineweb Forum/Huzur Adresi (https://www.forum.medineweb.net/)
-   Matematik (https://www.forum.medineweb.net/767-matematik)
-   -   KPSS Matematik Konu Özeti (https://www.forum.medineweb.net/matematik/22694-kpss-matematik-konu-ozeti.html)

Medineweb 04 Ağustos 2012 21:56

KPSS Matematik Konu Özeti
 
Sayılar

Rakam: Sayıları kullanmak için kullanılan {O, 1, 2,3,4,5,6, 7,8,9} sembollerinden her birine "rakam" denir.

Sayma Sayıları: Pozitif tam sayıların oluşturduğu S = {1, 2, 3, 4,...} kümesinin elemanlarına "sayma sayıları" denir.

Doğal Sayılar: N = {0, 1, 2, 3, 4, ...} kümesinin elemanlarına doğal sayı denir.

Tam Sayılar: Z = {...,-2,-1, 0, 1,2, 3,...} kümesinin elemanlarına tam sayı denir.

Negatif Tam Sayılar Kümesi:
Z ={...,-n -3, -2,-1}

Pozitif Tam Sayılar Kümesi:
Z+ = {1,2, 3, 4 n, ...}
Z = Z" u {0} u Z+
Çift Sayılar: {..., -4, -2, 0, 2, 4 2n, ...}
Tek Sayılar: {..., -5, -3, -1, 1, 3 (2n -1), ...}
Örnek: a ve b doğal sayılardır, a . b = 36 olduğuna
göre a + b toplamı en çok kaçtır?
Çözüm: a . b = 36 i i 1 .36 2.18 -» 3.12 -♦ 4.9 -6.6 -»
A) 12 B)13 C)15 D) 20 E) 37
1 + 36 = 37 (en büyük)
2 + 18 = 20
3 + 12 = 15
4 + 9 = 13 6 + 6 = 12
Çarpımları 36, toplamları en büyük olan sayılar 1 ile 36'dır. 1 ile 36'nın toplamı 37'dir.
Doğru cevap (E) şıkkıdır.
Örnek: a, b, c, e N, a . b = 19 , b . c = 5 ise a + b + c toplamı kaçtır?
Çözüm: a . b = 19 19 . 1 = 19
ise a =19, b = 1, c = 5 olduğundan a + b + c=19 + 1+5 = 25 bulunur.

Örnek: a , b e N , a2 - b2 = 23 ise a = ?

Çözüm: a2 - b2 = 23 (iki kare farkından)
(a - b). (a + b) = 1 . 23
t f t f

a-JT - 1
+ a+# = +23
2a = 24 a = 12 bulunur.

Örnek: Rakamları farklı üç basamaklı birbirinden farklı beş sayının toplamı 657 olduğuna göre bu sayıların en büyüğü en çok kaçtır? A) 253 B)243 C) 241 D) 240 E) 252

Çözüm: 102 + 103 + 104 + 105 + x = 657
414 +x = 657
x = 243 bulunur. Doğru cevap (B) şıkkıdır.

Örnek: İki basamaklı beş sayının toplamı 412 olduğuna göre bu sayılardan en küçüğü en az kaçtır? A. 14 B)15 C)16 D) 17 E) 18

Çözüm: 99 + 99 + 99 + 99 + x = 412
x = 412-396 x = 16 bulunur. Doğru cevap (C) şıkkıdır.
(Bu soruda rakamların farklı olması koşulu yoktur. Bu sayılardan en küçüğünü bulmak için diğer dört sayının en büyük değerlerini alması gerekir.)

Örnek: Bir kişi, bir "a" sayısını 14 ile çarpmış ve sonucu 2524 bulmuştur. İşlemi kontrol ettiğinde "a" sayısının 3 olan onlar basamağını 8 olarak gördüğünü fark etmiştir. Buna göre doğru sonuç kaçtır?

Çözüm: 3 olan onlar basamağı 8 alındığında çarpım 5 . 10 = 50 kat fazla bulunmuştur. Yapılan hata, 14 . 50 = 700'dür. O hâlde doğru sonuç: 2524-700 = 1824 olmalıdır.

alıntı
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...][Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

Medineweb 04 Ağustos 2012 21:56

Cevap: KPSS Matematik Konu Özeti
 
ASAL SAYILAR

Asal sayilar, 1 ve kendisinden baska pozitif tam böleni olmayan 1' den büyük tamsayilardir. En küçük asal sayi, 2' dir. 2 asal sayisi disinda çift asal sayi yoktur. Yani, 2 sayisi disindaki tüm asal sayilar tek sayidir. Asal sayilar kümesi,


{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... }dir.

Fermat Teoremi' ne göre, n asal sayi olmak üzere, 2n - 1 seklinde yazilabilen sayilar asal sayidir. Örnegin,

22 - 1, 23 - 1, 25 - 1, 27 - 1, 211 - 1, ...sayilari, asal sayidir.

Aralarinda asal sayilar:

1' den baska pozitif ortak böleni olmayan sayilara, aralarinda asal sayilar adi verilir. Birden fazla sayinin aralarinda asal olmasi için, bu sayilarin asal sayi olmasi gerekmez. Asal sayilar, kesinlikle aralarinda asal sayilardir. Bununla birlikte, 10 ve 81 sayisi birer asal sayi olmamasina ragmen, aralarinda asal sayilardir. Diger taraftan, 10 ile 8 sayisi birer asal sayi olmamasina ragmen, 2 ortak bölenleri oldugu için, aralarinda asal sayilar degildir. Bir sayi aralarinda asal iki sayiya bölünebiliyorsa, bu iki sayinin çarpimina da bölünür.

Örnegin,

· 2, 9

· 10, 81

· 5, 29

· 3, 8

· 2, 10, 35

sayi gruplari, ortak tam bölenleri olmadigi için aralarinda asal sayilardir.

Asal olmayan sayilara da bilesik sayi adi verilir. Dolayisiyla, bilesik sayilarin 1 ve kendisinden baska bölenleri vardir. Örnegin, 10 sayisi bir bilesik sayidir. Çünkü, 10 sayisinin 1 ve kendisinden baska, 2 ile 5 böleni vardir. Buradan, asal olmayan 10 sayisi, birer asal sayi olan 2 sayisi ile 5 sayisinin çarpimi olarak yazilabilir. 2 ile 5 sayisina, 10 sayisinin asal çarpani veya böleni denir. Yani, bilesik bir sayi, asal sayilarin çarpimi seklinde yazilabilir.

Örnek 1:

Asagidaki sayi gruplarindan hangisi aralarinda asaldir?

a) 4, 20 b) 6, 21 c) 27, 36, 39 d) 8, 24, 36 e) 3, 5, 25

Çözüm:

a) 4 ile 20' nin ortak böleni vardir ve bu da 2 ile 4' tür.

b) 6 ile 21' in ortak böleni vardir ve bu da 3' tür.

c) 27, 36 ve 39' un ortak böleni vardir ve ortak bölen 3' tür.

d) 8, 24 ve 36' nin ortak böleni vardir ve ortak bölen 2 ve 4' tür.

e) 3, 5 ve 25' in ortak böleni yoktur. Çünkü, bu üç sayiyi birden bölen 1' den baska sayi yoktur. Dolayisiyla, bu sayilar aralarinda asaldir.

Örnek 2:

2m + 3 ile 7n - 5 sayilari aralarinda asal olduguna göre,

ise, m ve n kaçtir?Çözüm:

2m + 3 ile 7n - 5 aralarinda asal olduklarina göre,

2m + 3 = 5 2m = 5 - 3 2m = 2 m = 17n - 5 = 9 7n = 9 + 5 7n = 14 n = 2bulunur.

Örnek 3:

a, b ve c birbirinden farkli rakamlar olmak üzere, ab ile bc iki basamakli aralarinda asal sayilardir. Buna göre, ab + bc toplaminin en küçük degeri kaçtir?

Çözüm:

Toplamin en küçük olmasi için, sayilari en küçük almaliyiz. Buna göre, ab = 21 olurken. bc = 13 olmalidir. Dolayisiyla,

ab + bc = 21 + 13 = 34

olur.

Örnek 4:

2x + y ile 4 x + y sayilari aralarinda asal olduguna göre,

ise, 3x + 2y toplami kaçtir

Çözüm:

2x + y ile 4x + y sayilari aralarinda asal olduguna göre, her ikisinin de ortak böleni olmamasi gerektiginden, esitligin sag tarafi ortak bölenden arindirilmalidir. Dolayisiyla,


olur ve buradan,

2x + y = 7 ... (1)

4x + y = 9 ... (2)

yazilir. Bu denklemleri ortak olarak çözelim. Bunun için, (1) nolu denklemi - 1 ile çarpalim ve (1) nolu denklemle (2) nolu denklemi taraf tarafa toplayalim.

- 1 / 2x + y = 7

4x + y = 9

- 2x - y = - 7

4x + y = 9

Son iki denklemin toplami

2x = 2

x = 1

bulunur ve x = 1 degerini (1) nolu denklemde yerine koyalim

2.1 + y = 7

y = 7 - 2

y = 5

bulunur. Buradan

3x + 2y = 3.1 + 2.5 = 3 +10 = 13

olur.

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

Her bilesik sayi, asal sayilarin veya asal sayilarin kuvvetlerinin çarpimi seklinde yazilabilir. Bu islemi yapmak için, ilgili sayinin sirasiyla en küçük asal sayidan baslanarak bölünebilmesi arastirilir.

Örnek 1:

124 sayisini asal çarpanlarina ayiralim.

Çözüm:

124= 31.2.2

Örnek 2:

500 sayisini asal çarpanlarina ayiralim.

Çözüm:

500=2.2.5.5.5


alıntı

Medineweb 04 Ağustos 2012 21:57

Cevap: KPSS Matematik Konu Özeti
 
FAKTÖRİYEL NE DEMEKTİR?

faktöriyel: ( ! ) sembolü ile gösterilir.örneğin n! demek 1'den n'e kadar olan sayılarının yanyana yazılıp çarpımı demektir. 5! demek 1'den 5'e kadar sayıların yanyana yazılıp çarpılmasıdır

n!=1.2.3.4.5.........n
0!=1
1!=1
2!=1.2=2
3!=1.2.3=6
4!=1.2.3.4=24
5!=1.2.3.4.5=120
10!=7!.8.9.10
6!=4!.5.6
örnek:
5!/3!=1.2.3.4.5/1.2.3=120/6=20
n!/(n-1)!=(n-1)!.n/(n-1)!=n

FAKTÖRİYELLER

1. x ve n sayma sayıları olmak üzere, 21! = 2n.x ise, n nin alabileceği en büyük değer kaçtır?

a) 16
b) 17
c) 18
d) 19
e) 20

2. n bir doğal sayı olmak üzere, 67! / 15n işleminin sonucunun doğal sayı olması için, n nin en büyük değeri kaç olmalıdır?

a) 15
b) 16
c) 17
d) 18
e) 19


3. m ve n ardışık çift doğal sayılardır. m>n olmak üzere, m!/n! + 4 = 94 ise, n kaçtır ?

a) 7
b) 8
c) 9
d) 10
e) 11

4. 2! + 3! + 4! + … + 1472! toplamının birler basamağındaki rakam kaçtır?

a) 1
b) 2
c) 3
d) 4
e) 5

5. 6! + 7! + 8! toplamı aşağıdakilerden hangisine tam bölünemez ?

a) 3
b) 5
c) 15
d) 25
e) 45

6. 18! sayısı, 16! sayısının kaç katıdır?

a) 16
b) 18
c) 34
d) 306
e) 645

7. f(a)=(a+2)! ise, f(3) - f(2) = ?

a) 1
b) 4
c) 5
d) 16
e) 96

8. 120! - 83! - 1 sayısının sonunda kaç tane dokuz vardır?

a) 18
b) 19
c) 20
d) 21
e) 22

9. n.(n+1)! = 72 ise, n kaçtır?

a) 3
b) 6
c) 8
d) 9
e) 36

YANITLAR : 1-C 2-A 3-B 4-B 5-D 6-D 7-E 8-B 9-A


alıntı

Medineweb 04 Ağustos 2012 21:57

Cevap: KPSS Matematik Konu Özeti
 
Küme: Elemanları kesin olarak belli olan nesneler veya semboller topluluğuna denir.
a) Kümeyi oluşturan nesnelere kümenin elemanları denir. Genellikle küme büyük harfler ile,elemanları küçük harflerle gösterilir.

b) Kümeyi A, elemanı x ile gösterirsek,
x, A kümesinin elemanı ise x e A,
x, A kümesinin elemanı değilse x e A, şeklinde gösterilir.
c) Kümenin eleman sayısı s(A) şeklinde gösterilir.

KÜMELERİN GÖSTERİMİ
1. Liste yöntemi ile, A = {Pazar, Pazartesi, Perşembe}
2. Ortak özellik yöntemi ile;
A = {x | x : p harfi ile başlayan günlerimiz}
3. Venn şeması ile:
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
DENK KÜMELER: Eleman sayıları eşit olan kümelere denk kümeler denir. "=" şeklinde gösterilir.
Örnek: A = {1, 2, 3, 4}, B = {a, b, c, d} s(A) = 4 j
s(A) = s(B) A = B dir.
s(B) = 4 J

EŞİT KÜMELER: Tüm elemanları aynı olan kümelere eşit kümeler denir. Örnek: A = {x | x : Haftanın günleri}
B = {pazar, pazartesi, salı, çarşamba, perşembe, cuma, cumartesi}
Tüm elemanlar aynı olduğundan, A = B dir.

ALT KÜME: A kümesinin tüm elemanları, B kümesinin içinde ise A, B'nin bir alt kümesidir." denir. A c B şeklinde gösterilir.
NOT
1) A a B şeklinde yazılırsa A, B nin alt kümesi değildir.
2) B D A şeklinde yazılırsa B, A yı kapsar şeklinde okunur.
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
C c B
(C, A ve B nin alt kümesidir.)
CcA


Örnek: A ={1,2, 3} kümesinin tüm alt kümelerini yazalım.
0, {1}, {2}, {3}, {1,2}, {2, 3}, {1,3}, {1,2, 3}


*^0T 1) A kümesinin tüm alt küme sayısı 8 tanedir. 0 küme ve her küme kendisinin bir alt kümesidir. s(A) = 3 23 = 8 olduğuna dikkat ediniz.
2) Alt küme sayısı; s(A) = n => 2n şeklinde bulunur.
3) Öz alt küme, tüm alt kümenin eleman sayısından kümenin kendisinin çıkarılması ile bulunur.
s(A) = n => öz alt küme sayısı 2n - 1 şeklinde bulunur.

Örnek: 5 elemanlı bir kümenin kaç tane alt kümesi vardır?
A) 40 B)35 C)32 D) 31 E) 28

Çözüm: s(A) = 5=> 25 = 2 . 2 . 2 . 2 . 2 = 32 tanedir.
Doğru cevap (C) şıkkıdır
Örnek: 63 tane öz alt kümesi olan küme kaç ele-manlıdır?

A) 6 B)5 C)4 D) 3 E) 2

Çözüm: s(A) = n => Öz alt küme sayısı = 2n - 1 => 63 = 2n - 1 => 64 = 2n => 26 = 2n => n = 6 bulunur.

Doğru cevap (A) şıkkıdır.
Örnek: 6 elemanlı bir kümenin kaç tane 3 lü alt kümesi vardır?
EVRENSEL KÜME: Bir işlemde tüm olasılıkları içine alan kümeye evrensel küme denir. Genel olarak evrensel küme E ile gösterilir.
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
A nın dışındaki elemanlardan oluşan kümeye
A nın tümleyeni denir ve A' şeklinde gösterilir
AYRIK KÜMELER: A n B = 0 ise A ile B kümesine ayrık kümeler denir.


alıntı

Medineweb 04 Ağustos 2012 21:57

Cevap: KPSS Matematik Konu Özeti
 
1) İKİ KÜMENİN BİRLEŞİMİ: iki kümenin tüm elemanlarından oluşan kümeye denir.
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
Tüm taranan kısım A ile B kümesinin birleşimi olup

A u B şeklinde gösterilir.




Örnek: A = {1, 2, a, c, 4} , B = {a, b, c, 1, A} için

A u B = {1, 2, a, c, 4, b, A} (Birleşim işlemi alınırken birinci küme aynın yazılır, ikinci kümeden de yazılmayan elemanlar yazılarak birleşme işlemi yapılır. Aynı elemanın birden fazla yazılmadığına dikkat ediniz.)

Örnek: A = {a, b, c, 1, 2, +} , B = {1, 2, 3, a, +}, C = {a, 3, 8, x, 4} ise Au (B u C) = ? bulalım. Au(1,2,3, a, +, 8, x, 4} = {a, b, c, 1, 2, +, 3, 8, x, 4}

NOT Kümedeki elemanların sırasının önemi yoktur.

2) İKİ KÜMENİN KESİŞİMİ: İki ya da daha fazla kümelerdeki ortak elemanların yazılmasıyla oluşan kümeye denir.
Şekildeki taralı kısım A \ (B u C) şeklinde gösterilir.
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
A ile B kümesinin kesişimi şekil üzerinde taranmış olup, A n B şeklinde gösterilir.
Örnek: A = {1, 2, a, b} , B = {a, e, 1, c} için An B = {1, a} Kesişimi bulunur.

3) İKİ KÜMENİN FARKI: Birinci kümede olup da, ikinci kümede olmayan elemanların yazılmasıyla oluşan kümeye denir. Birinci küme A, ikinci küme B ise A \ B şeklinde gösterilir.
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
Şekildeki taralı kısımlar, [(A n B) \ C] u [C \ (A u B)] (Çift taralı kısımlar istendiğinde tek, tek ifade edilip aralarına birleşim işareti konur.) KÜMELERLE İLGİLİ GENEL ÖZELLİKLER
1) A D A = A
2) A Q A = A 3)AQB = BDA
3)AQB = BD
4) AQ B = BD A
5) AQ 0 = A
6) A O 0 = 0
7) s(A D B) = s(A) + s(B) - s(A Q B)
8) A □ B ve B D A D A = B dir.
9) A O A1 = E

10) s(A) + s(A') = s(E)
11) 0' = E
12) E' = 0
İngilizce bilenler : a + b
Problemleri gözerken izlenecek yolu bir örnekle açıklayalım.
İ: İngilizce bilenler, F: Fransızca bilenler olsun. [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

Fransızca bilenler : b + c
Hiç birini bilmeyenler: d
En az bir dil bilen : a + b + c
En çok bir dil bilen : a + c + d
Sadece bir dil bilen : a + c
En çok iki dil bilen : a + b + c + d

Şeklinde denklemler kurulup sorular çözülür.


alıntı

Medineweb 04 Ağustos 2012 21:58

Cevap: KPSS Matematik Konu Özeti
 
Gerçel sayılar (veya Reel sayılar), Rasyonel sayılar kümesinin standart metriğe göre bütünlenmesiyle elde edilen kümedir. Reel sayılar kümesi[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] sembolüyle gösterilir.

Basit aritmetik teknikleriyle kolayca ispatlanabileceği üzere, tüm rasyonel sayıların tekrar eden birer ondalık açılımı vardır. Mesela

[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]


veya

[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]


eşitliklerinde olduğu gibi. Burada dikkat edilmesi gereken, ondalık basamaklardaki rakamların bir süre sonra bloklar halinde periyodik tekrar etme özelliğidir. Rasyonel sayılardan reel sayıları elde etme işlemini ise rasyonel sayılara ondalık açılımındaki rakamların periyodik tekrar etmediği sayıların eklenmesi olarak düşünülebilir. Bu tür sonradan elde ettiğimiz reel sayılara irrasyonel sayılar denir.


alıntı

Medineweb 04 Ağustos 2012 21:58

Cevap: KPSS Matematik Konu Özeti
 
Rasyonel Sayılar ( , rasyonel veya oranlı sayılar (veya kesirler) iki tamsayının birbirine oranı ile ifade edilebilen sayılardır. Oranlı sayılar b sıfır olmamak üzere a/b şeklinde (a ve b tamsayı) yazılabilir. 2/3 ve 4/6 veya 6/9 eşdeğer oranlı sayılardır. Dolayısıyla her oranlı sayı sonsuz şekilde ifade edilebilir. Oranlı sayıların en basit formu a ve b tamsayılarının [[ortak Her tam sayı oranlı sayıdır. Çünkü [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] veya [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] veya [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] şeklinde yani oranlı sayı tanımına uygun biçimde yazılabilirler. Oranlı sayılar kümesi [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...], tam sayılar kümesi [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]'yi kapsar. Yani [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...].
Tanım Oranlı sayılar
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...], [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] bir genişlemesidir ve Q ile veya [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] ile gösterilir. [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] kümesi genelde şöyle tanımlanır:
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
Daha ince bir tanımı ise tam sayılar üzerinden tanımlanacak bir [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] yapılabilir. Böylece her [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] bir oranlı sayı olarak anılır. [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] kümesinden seçilmiş keyfî (a,b) ve (c,d) [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] için "~" [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
olarak tanımlansın. Bunun bir denklik bağıntısı olduğu kolaylıkla kanıtlanabilir. Bu durumda, denklik sınıfları
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
olurlar. Oranlı sayı ise basitçe
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
şeklinde tanımlanır.
Tanımda paydanın sıfır olmama şartı [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] ifadesinin tanımlanmamış olmasındandır. Bir sayının sıfıra bölümü [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...].



alıntı

Medineweb 04 Ağustos 2012 21:58

Cevap: KPSS Matematik Konu Özeti
 
ARDIŞIK SAYILAR
Belli bir kurala göre bir birini takip eden sayı gruplarına ardışık sayılar denir.

Ardışık doğal sayılar; 0, 1, 2, 3, 4, 5, …....
Ardışık tek sayılar; 1, 3, 5, 7, 9, 11, 13, 15, …......
Ardışık çift sayılar; 0, 2, 4, 6, 8, 10, 12, 14, 16, …......
4 ün katı olan ardışık doğal sayılar; 0, 4, 8, 12, 16, …..... şeklinde devam eder.

n bir tam sayı olmak üzere,

1- Ardışık dört tam sayı sırasıyla;
n, n + 1, n + 2, n + 3 tür.

2-Ardışık dört çift sayı sırasıyla;
2n, 2n + 2, 2n + 4, 2n + 6 dır.

3-Ardışık dört tek sayı sırasıyla;
2n + 1, 2n + 3, 2n + 5, 2n + 7 dir.

4-Üçün katı olan ardışık dört tam sayı sırasıyla;
3n, 3n + 3, 3n + 6, 3n + 9 dur.

Ardışık sayıların toplamı, sayı adedine bölünürse ortanca terim bulunur. Eğer sayı adedi çift ise, ortanca terim sayı dizisine ait değildir.

UYARI : İki ardışık sayının toplamı daima tektir. Bütün çift sayıların toplamı daima çifttir.

Biraz örnek çözelim:

SORU : İki ardışık sayının toplamı 97 ise bu sayılar kaçtır?

Cevap : n + n + 1 97

Yukarıda iki ardışık sayı n ve n +1 ile gösterilmiştir. İlk iş olarak fazlalık olan 1 i toplamdan yani 97 den çıkarıyoruz.

97 – 1 = 96

Artık fazlalık kalmadığına göre; ve iki ardışık sayımız olduğuna göre, kalan sayıyı ikiye bölerek küçük sayıyı bulabiliriz.

96 : 2 = 48 Küçük sayı

Büyük sayıyı bulmak için ise;

48 + 1 = 49

SORU : İki ardışık çift sayının toplamı 178 ise bu sayılar kaçtır?

Cevap : n

+ n + 2

178

Ardışık çift sayıların ikişer ikişer artıyor olması sebebiyle, bu defa ikinci sayımızdaki 2 fazlalığını toplamdan çıkarıyoruz.

178 – 2 = 176

Artık fazlalık kalmadı. iki sayımız olduğu için sonucu ikiye bölerek küçük sayımızı bulabiliriz.

176 : 2 = 88 Küçük sayı

Büyük sayı, küçük sayıdan 2 fazla olduğuna göre; 2 ekleyerek büyük sayıyı bulabiliriz.

88 + 2 = 90 Büyük sayı

NOT : Bir çok öğrencimizin düştüğü tuzak; verilen sayıyı hemen sayı adedine bölmeleridir. Unutmayalım ki; ardışık sayılar belirli oranlarda artarak gider. Sizlerin öncelikle bu artışı toplamdan çıkarmanız gerekir. Daha sonra kaç sayı varsa, ona göre bölme işlemini yaparak küçük sayımızı bulabiliriz. Bu bölme işlemi sonrası çıkan sonuş bütün işlemlerde küçük sayıdır. Büyük sayıyı bulmak için ise tekrar ekleme yapmanız grekmektedir.

Yukarıda da değinildiği üzere bu artış; ardışık sayılarda 1, ardışık çift ve ardışık tek sayılarda 2'dir.

Ardışık çift ve ardışık tek sayılarla ilgili problemler aynı şekilde çözülür. çift ve tek oluşları kafanızı karıştırmasın. Çünkü her ikisi de 2'şer 2'şer artmaktadır. Bir tane de tek sayılarla ilgili çözerek görelim.

SORU : Ardışık iki tek sayının toplamı 108'dir. Buna göre küçük ve büyük sayıları bulalım.

Cevap : n

+ n + 2

108

Yine öncelikli hedefimiz fazlalığı çıkarmak,

108 - 2 = 106

Daha sonra iki sayı olduğu için sonucu ikiye bölerek küçük sayıyı bulmak,

106 / 2 = 53 Küçük sayı

Büyük sayı için ise 2'yi tekrar eklememiz yeterli,

53 + 2 = 55 Büyük sayı

ISINMA TURLARI SONA ERDİ, SORULARIMIZI BİRAZ DAHA ZORLAŞTIRALIM... :)

SORU: Ardışık üç sayının toplamı 246'dır. Buna göre küçük, orta ve büyük sayıları bulunuz.

Cevap: n

n + 1

+ n + 2

246

bu defaki fazlalıklarımız 1 ve 2 ------ yani 1 + 2 = 3

Bu fazlalığı toplamdan çıkaralım

246 - 3 = 243

Bu defa iki değil, üç sayımız var. O halde sonucuda 3'e bölmemiz gerekiyor.

243 / 3 = 81 Küçük sayı

Ortanca sayı küçük sayıdan 1 fazla olduğuna göre;

81 + 1 = 82 ortanca sayı

Büyük sayı küçük sayıdan 2 fazla olduğuna göre;

81 + 2 = 83 Büyük sayıdır

SORU: Ardışık üç çift sayının toplamı 222'dir. Buna göre; küçük, ortanca ve büyük sayıları bulunuz.

Çözüm: Çift sayılar 2'şer 2'şer artmaktaydı. O halde;

n

n + 2

+ n + 4

222

Fazlalıklarımız 2 ve 4 ----- Yani 2 + 4 = 6

Bu fazlalığı çıkaralım 222 - 6 = 216

Üç sayımız olduğu için yine 3'e bölelim ve küçük sayımızı bulalım.

216 / 3 = 72 Küçük sayı

72 + 2 = 74 Ortanca sayı

72 + 4 = 76 Büyük sayı

SORU: Ardışık dört sayının toplamı 418' dir. Buna göre bu sayıları bulunuz.

Cevap: 1.sayı n

2.sayı n + 1

3.sayı n + 2

4.sayı + n + 3

418

Dört sayımızda yukarıda belirtilmiştir. fazlalıklara baktığımızda; 1, 2 ve 3' ü görüyoruz. yani 1 + 2 + 3 = 6

Fazlalığımızı çıkarıyoruz, 418 - 6 = 412

Dört sayımız olduğu için sonucu 4'e bölerek küçük sayımızı yani 1.sayımızı buluyoruz.

412 / 4 = 103 (1.sayı)

103 + 1 = 104 (2.sayı)

103 + 2 = 105 (3.sayı)

103 + 3 = 106 (4.sayı)


alıntı

Medineweb 04 Ağustos 2012 21:59

Cevap: KPSS Matematik Konu Özeti
 
Ardışık Çift Doğal Sayıların Toplamı:
2+4+6+ ... + 2n = n.(n+1)

Örnek: 2 + 4 + 6 + 8 + ... + 42 toplamı kaçtır?

Çözüm: 2 + 4 + 6 + 8 + ... + 42 = 21 .(21 +1) = 21 .22 = 462dir.
2n = 42 => n = 21 (terim Sayısıdır)
Örnek: 32 + 34 + 36 + ... + 60 toplamı kaçtır?

Çözüm: 2 + 4 + 6 + ... + 60 = 30 . 31 = 930 2 + 4 + 6 + ... + 30 = 15 . 16 = 240 32+ 34+ 36+ ... + 60 = (2 + 4 + 6 + ... + 60) - (2 + 4 + 6 + ... + 30) = 930 - 240 = 690 bulunur.

alıntı

Medineweb 04 Ağustos 2012 21:59

Cevap: KPSS Matematik Konu Özeti
 
Ardışık Tek Doğal Sayıların Toplamı:
1 + 3 + 5 + .... + (2n − 1) = n.n
Örnek: 1 + 3 + 5 + ... + 29 toplamı kaçtır?

Çözüm: 1 + 3 + 5 + ... + 29 = 152 = 225 bulunur. 2n - 1 = 29 =» 2n = 30
n = 15 (terim Sayısıdır)




Ardışık Sayılarda Terim Sayısı

Son Terim - İlk Terim
Terim Sayısı =--------------------------------------- + 1 dır.
Ortak Fark

Örnek: 13 + 17 + 21 + 25 + ... + 53 toplamı kaçtır?

Çözüm: Her ardışık terim arasındaki fark 4'tür. 17-13 = 4, 21-17 = 4, 25 - 21 = 4 gibi



Sayı Ekseni
Sayı ekseninde her noktaya bir reel sayı karşılık gelir. 0'a orijin (başlangıç noktası) denir. Sayı doğrusunda O'ın solunda negatif sayılar, sağında ise pozitif sayılar vardır.



İrrasyonel sayılar
Rasyonel olmayan sayılara irrasyonel sayı denir.
Örnek
bir irrasyonel sayıdır. Çünkü; a ve b birer tam sayı olmak üzere, şeklinde yazılamaz.Kök içinden tam olarak çıkamayan sayılar, e ve p gibi sayılar irrasyonel sayılardır.
Rasyonel sayılar kümesine irrasyonel sayıların katılması ile reel sayılar kümesi elde edilir. İrrasyonel sayıların kümesi I ile gösterilir. Buna göre;
QUI=R olur.

alıntıdır.

Medineweb 04 Ağustos 2012 22:00

Cevap: KPSS Matematik Konu Özeti
 
BÖLME


A, B, C, K birer doğal sayı ve B ¹ 0 olmak üzere,
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
bölme işleminde,
  • <LI dir=ltr>A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir.

  • <LI dir=ltr>A = B . C + K dır.
    <LI dir=ltr>Kalan, bölenden küçüktür. (K < B)
    <LI dir=ltr>Kalan, bölümden (C den) küçük ise, bölen (B) ile bölümün (C) yeri değiştirilebilir.
  • K = 0 ise, A sayısı B ile tam bölünebiliyor denir.
B. BÖLÜNEBİLME KURALLARI


1. 2 İle Bölünebilme
Birler basamağındaki rakamı çift olan sayılar 2 ile tam bölünür.
Tek sayıların 2 ile bölümünden kalan 1 dir.
2. 3 İle Bölünebilme
Rakamlarının sayısal değerleri toplamı 3 ün katı olan sayılar 3 ile tam bölünür.
Bir sayının 3 ile bölümünden kalan, rakamlarının toplamının 3 ile bölümünden kalana eşittir.
3. 4 İle Bölünebilme
Bir sayının onlar basamağındaki rakam ile birler basamağındaki rakamın (son iki basamak) belirttiği sayı, 4 ün katı olan sayılar 4 ile tam bölünür.
... abc sayısının 4 ile bölümünden kalan bc nin (son iki basamak) 4 ile bölümünden kalana eşittir.
l... abc sayısının 4 ile bölümünden kalan
c + 2 . b nin 4 ile bölümünden kalana eşittir.
4. 5 İle Bölünebilme
Birler basamağındaki rakam 0 veya 5 olan sayılar 5 ile tam bölünür.
Bir sayının 5 ile bölümünden kalan, o sayının birler basamağındaki rakamın 5 ile bölümünden kalana eşittir.
5. 7 İle Bölünebilme
(n + 1) basamaklı anan-1 ... a4a3a2a1a0 sayısının 7 ile tam bölünebilmesi için,
k Î Z olmak üzere,
(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + ... = 7k
olmalıdır.
Ü Birler basamağı a0, onlar basamağı a1, yüzler basamağı a2, ... olan sayının 7 ile bölümünden kalan (a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + ... işleminin sonucunun 7 ile bölümünden kalana eşittir.
6. 8 İle Bölünebilme
Yüzler basamağındaki, onlar basamağındaki ve birler basamağındaki rakamların (son üç rakamın) belirttiği sayı 8 in katı olan sayılar 8 ile tam bölünür.
3000, 3432, 65104 sayıları 8 ile tam bölünür.
Ü Birler basamağı c, onlar basamağı b, yüzler basamağı a, ... olan sayının 8 ile bölümünden kalan c + 2 . b + 4 . a toplamının 8 ile bölü-münden kalana eşittir.
7. 9 İle Bölünebilme
Rakamlarının toplamı 9 un katı olan sayılar 9 ile tam bölünür.
Bir sayının 9 ile bölümünden kalan, o sayının rakamlarının toplamının 9 ile bölümünden kalana eşittir.
8. 10 İle Bölünebilme
Birler basamağındaki rakamı 0 (sıfır) olan sayılar 10 ile tam bölünebilir. Bir sayının birler basamağındaki rakam o sayının 10 ile bölümünden kalandır.
9. 11 İle Bölünebilme
(n + 1) basamaklı anan–1 ... a4a3a2a1a0 sayısının 11 ile tam bölünebilmesi için
(a0 + a2 + a4 + ...) – (a1 + a3 + a5 + ...)... = 11 . k
ve k Î Z olmalıdır.
® (n + 1) basamaklı anan–1 ... a4a3a2a1a0 sayı-sının 11 ile bölümünden kalan
(a0 + a2 + a4 + ...) – (a1 + a3 + a5 + ...)... işleminin sonucunun 11 ile bölümünden kalana eşittir.

Aralarında asal iki sayıya bölünebilen bir sayı, bu iki sayının çarpımına da tam bölünür.
  • <LI dir=ltr>2 ve 3 ile tam bölünen sayılar 6 ile de bölünür.
  • 3 ve 4 ile tam bölünen sayılar 12 ile de bölünür.

C. BÖLEN KALAN İLİŞKİSİ

A, B, C, D, E, K1, K2 uygun koşullarda birer doğal sayı olmak üzere,
A nın C ile bölümünden kalan K1 ve
B nin C ile bölümünden kalan K2 olsun.

Buna göre,
  • <LI dir=ltr>A . B nin C ile bölümünden kalan K1 . K2 dir.

    <LI dir=ltr>A ± B nin C ile bölümünden kalan K1 ± K2 dir.
    <LI dir=ltr>D . A nın C ile bölümünden kalan D . K1 dir.
  • AE nin C ile bölümünden kalan K1E dir.
Burada kalan değerler bölenden (C den) büyük ise, tekrar C ile bölünerek kalan bulunur.

D. ÇARPANLAR İLE BÖLÜM

Bir A doğal sayısı B . C ile tam bölünüyorsa A sayısı B ve C doğal sayılarıyla da bölünebilir. Fakat bu ifadenin karşıtı (A sayısı B ile ve C ile tam bölünüyorsa A sayısı B . C ile tam bölünür.) her zaman doğru değildir.
  • <LI dir=ltr>144 sayısı 2 . 6 = 12 ile tam bölünür ve 144 sayısı 2 ile ve 6 ile de tam bölünür.
  • 6 sayısı 2 ile ve 6 ile tam bölünür. Fakat 6 sayısı 2 . 6 = 12 ile tam bölünemez.
E. BİR TAM SAYININ TAM BÖLENLERİ


Bir tam sayının, asal sayıların çarpımı biçiminde yazıl-masına bu sayının asal çarpanlarına ayrılması denir.
a, b, c birbirinden farklı asal sayılar ve m, n, k pozitif tam sayılar olmak üzere,


A = am . bn . ck olsun.
  • <LI dir=ltr>A yı tam bölen asal sayılar a, b, c dir.

    <LI dir=ltr>A sayısının pozitif tam bölenlerinin sayısı: (m + 1) . (n + 1) . (k + 1) dir.
    <LI dir=ltr>A sayısının pozitif tam bölenlerinin ters işaret-lileri de negatif tam bölenidir.
  • A sayısının tam sayı bölenleri sayısı:
2 . (m + 1) . (n + 1) . (k + 1) dir.
  • <LI dir=ltr>A sayısının tam sayı bölenleri toplamı 0 (sıfır) dır.
  • A sayısının pozitif tam bölenlerinin toplamı :
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
  • <LI dir=ltr>A sayısının asal olmayan tam sayı bölenlerinin sayısı, A nın tam sayı bölenlerinin sayısından A nın asal bölenlerinin sayısı çıkarılarak bulunur.

    <LI dir=ltr>A nın asal olmayan tam sayı bölenleri toplamı – (a + b + c) dir.
  • A sayısından küçük A ile aralarında asal olan sayıların sayısı:
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
  • A sayısını pozitif tam sayı bölenlerinin çarpımı:
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]




Medineweb 04 Ağustos 2012 22:00

Cevap: KPSS Matematik Konu Özeti
 
MÜKEMMEL SAYI
Kendisi hariç bütün pozitif bölenlerinin toplamı kendisini veren sayılara "mükemmel sayı" denir.


Örnek: 28 mükemmel bir sayıdır.
28 = 22 .7
28 sayısının pozitif bölenleri: 1,2,4, 7, 14, 28
28'in bölenlerinden kendisi hariç diğerlerinin toplamı 1 + 2 + 4 + 7 + 14 = 28'dir.

alıntı

Medineweb 04 Ağustos 2012 22:01

Cevap: KPSS Matematik Konu Özeti
 
ORTAK BÖLENLERİN EN BÜYÜĞÜ (OBEB)


En az biri sıfırdan farklı iki ya da daha fazla tam sayının ortak bölenlerinin en büyüğüne bu sayıların ortak bölenlerinin en büyüğü denir ve OBEB biçiminde gösterilir.

OBEB bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan büyük olmayan üslülerin çarpımı bu sayıların OBEB ini verir.
  • Eğer a
  • ¹ 0 veya b ¹ 0 ise OBEB tanımlı olup OBEB(a, b) ³ 1 dir.
  • a = b = 0 ise OBEB(a, b) tanımsızdır.
B. ORTAK KATLARIN EN KÜÇÜĞÜ (OKEK)


Hepsi sıfırdan farklı iki ya da daha fazla tam sayının pozitif ortak katlarının en küçüğüne bu sayıların ortak katlarının en küçüğü denir ve OKEK biçiminde gösterilir.

OKEK bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan küçük olmayan üslülerin çarpımı bu sayıların OKEK ini verir.
  • a ve b tam sayılarından en az biri sıfır ise, OKEK(a, b) tanımsızdır.
a ve b pozitif tamsayı, a £ b ise,
  • OBEB(a, b)
  • £ a £ b £ OKEK(a, b)
  • a . b = OBEB(a, b) . OKEK(a, b)
  • a ile b aralarında asal ise, OBEB(a, b) = 1
Ü [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]kesirleri ile tam bölünen en küçük pozitif kesir [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
kesirleri ile tam bölünebilen en küçük pozitif kesir
Ü a ve b pozitif tam sayı olmak üzere,
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
Ü İki pozitif tam sayının çarpımı, bu sayıların OBEB i ile OKEK inin çarpımına eşittir. Fakat ikiden fazla pozitif tam sayının çarpımı, bu sayıların OBEB i ile OKEK inin çarpımına her zaman eşit değildir.
Ü A pozitif tam sayısı a . b ile tam bölünebiliyor ve OKEK(a, b) = x ise, A sayısı x ile tam bölünür.


alıntıdır.

Medineweb 04 Ağustos 2012 22:01

Cevap: KPSS Matematik Konu Özeti
 
Taban Aritmetiği


Herhangİ bİr sayı sİstemİnden Onluk sayı sİstemİne geçiş:

Herhangi bir sayı sisteminden Onluk sayı sistemine geçebilmek için, basamak (hane) çözümlemesi yapılmalıdır. n, bir sayı sisteminin tabanını göstermek üzere
n >= 2 olacak şekilde bir doğal sayı ise, (abcde)n sayısı onluk sayı sistemine şöyle dönüştürülür.


Örnek: (218)9 = ( ? )10 taban dönüşümünü yapalım.
81 9 1
( 2 1 8 )9 = 92.2 + 91.1 + 90.8
= 81.2 + 9.1 + 1.8
= 162 + 9 + 8
= 179
Örnek: (305)7 = ( ? )10 taban dönüşümünü yapalım.
49 7 1
( 3 0 5)7 = 72.3 + 71.0 + 70.5
= 49.3 + 7.0 + 1.5
= 147 + 0 + 5
= 152


Onluk sayı sİstemİnden Dİğer sayı sİstemlerİne geçİş:
Onluk tabandaki bir sayı diğer tabanlara çevrilirken geçilmesi istenen taban hangi taban ise, onluk tabandaki sayı o sayıya bölünmelidir. Bölme işlemi, bölümdeki sayı taban sayısından küçük olana kadar yapılmalıdır. Yeni tabandaki sayı, en sondan başlanarak önce bölüm sonra da kalanlar sırasıyla yazılarak elde edilir.


Onluk taban dışındakİ bİr tabandan başka bİr tabana geçİş:
Verilen sayı önce Onluk tabana çevrilir. Sonra da Onluk tabandaki sayı, geçilmek istenen tabana dönüştürülür. Yani, n verilen taban ve m istenen taban ise, dönüşümün mantığı şu şekildedir:


Örnek: (1011)2 = ( ? )7 taban dönüşümünü yapalım.

Önce 2 tabanındaki 1011 sayısını Onluk tabana çevirelim.

8 4 2 1

( 1 0 1 1 )2 = 23.1 + 22.0 + 21.1 + 20.1 = 8.1 + 4.0 + 2.1 + 1.1

= 8 + 0 + 2 + 1 = 11

Şimdi de Onluk tabandaki 11 sayısını 7 tabanına çevirelim. 11 sayısını, 7' ye böldüğümüzde, bölüm 1 ve kalan da 4 olacağından,

(11)10 = (14)7

sonucunu elde ederiz. Dolayısıyla, (1011)2 = (14)7 olarak bulunur.

Onluk taban dışındakİ tabanlardakİ sayıların tekliği veya çiftliği:

Sayının tabanı çift ise, sayının son rakamına (birler basamağındaki rakamına) bakılarak karar verilir. Şayet sayının son rakamı çift ise, sayı çifttir. Şayet sayının son rakamı tek ise, sayı tektir. Örneğin, (12345)8 = Tek, (1236)8 = Çift olur.

Sayının tabanı tek ise, sayının rakamları toplamına bakılarak karar verilir. Şayet sayının rakamları toplamı çift ise, sayı çifttir. Şayet sayının rakamları toplamı tek ise, sayı tektir. Örneğin, (234)7 = Tek, (2361)7 = Çift olur.

Onluk taban dışındakİ tabanlarda arİtmetİk İşlemler:

Toplama İşlemİ:

Örnek: (101)2 + (11)2 = ( ? )2

( 1 0 1 )2

+ ( 1 1 )2

__________

( 1 0 0 0 )2

İkilik tabanda 1 ile 1' in toplamı 10' dır. Dolayısıyla, ilgili basamağa 0 yazılır ve 1 sayısı bir önceki basamağa eklenir.

Örnek: (234)5 + (143)5 = ( ? )5

Birler basamağının toplamı, 4 + 3 = 7' dir. 7, 5 tabanında 12' dir. Dolayısıyla, birler basamağına 2 yazıp, beşler basamağına 1 ekleriz.

Beşler basamağının toplamı, 3 + 4 + 1 (birler basamağından eklenen) = 8 olur. 8, 5 tabanında 13' tür. Dolayısıyla, beşler basamağına 3 yazıp, yirmibeşler basamağına 1 ekleriz.

Yirmibeşler basamağının toplamı, 2 + 1 + 1 (beşler basamağından eklenen) = 4 olarak bulunur.

Sonuç olarak, toplam (432)5 olur.

Çıkarma İşlemİ:

Örnek: (132)5 - (23)5 = ( ? )5

Birler basamağının farkı, 2' den 3 çıkartılamayacağı için, beşler basamağından 1 alınmalıdır (yani, 5 alınmalıdır). Bu durumda, 7' den 3 çıkartılarak 4 bulunur.

Beşler basamağından 1 alındığı için, burada 2 kalmıştır. Böylece, 2' den 2 çıkartıldığında 0 kalır.

Yirmibeşler basamağındaki 1 sayısından birşey çıkartılmadığı için aynen alınır.

Sonuç olarak, fark (104)5 bulunur.

Çarpma İşlemİ:

Örnek: (144)5 x (23)5 = ( ? )5

(144)5 x (23)5 = (144)5 x (3)5 + (144)5 x (2)5 = ( 1 0 4 2 )5

+ ( 3 4 3 )5

= ( 1 0 0 2 2 )5

Çarpma işleminin mantığı, onluk tabandaki çarpma işlemine çok benzer. 5 tabanındaki 144 ile 3' ün çarpımı şöyle yapılır:

Birler basamağı: 4 ile 3' ün çarpımı 12' dir. Birler basamağına 2 yazılır ve 10 sayısının içinde 5 sayısı 2 tane olduğu için, beşler basamağına 2 aktarılır.

Beşler basamağı: 4 ile 3' ün çarpımı 12' dir ve buna birler basamağından aktarılan 2 sayısı da ilave edilerek 14 elde edilir. Beşler basamağına 4 yazılır ve 10 sayısının içinde 5 sayısı 2 tane olduğu için, yirmibeşler basamağına 2 aktarılır.

Yirmibeşler basamağı: 1 ile 3' ün çarpımı 3' tür ve beşler basamağından aktarılan 2 sayısı da ilave edilerek 5 elde edilir. 5 tabanında 5, 10 olduğu için yirmibeşler basamağına 0 ve yüzyirmibeşler basamağına da 1 yazılır.

Örnek: ( 25m0 )6 = ( 642 )10 ise, m = ?

216 36 6 1

( 2 5 m 0 )6 = ( 642 )10

216.2 + 36.5 + 6.m + 1.0 = 642

432 + 180 + 6m + 0 = 642

612 + 6m = 642

6m = 642 - 612

6m = 30

m = 5

Örnek: ( 102 )m + ( 145 )m = ( 251 )m ise, m = ?

m2 m 1 m2 m 1 m2 m 1

( 1 0 2 )m + ( 1 4 5 )m = ( 2 5 1 )m

( m2.1 + m.0 + 1.2 ) + ( m2.1 + m.4 + 1.5 ) = m2.2 + m.5 + 1.1

m2 + 2 + m2 + 4m + 5 = 2m2 + 5m +1

2m2 + 4m + 7 = 2m2 + 5m + 1

4m +7 = 5m + 1

7 - 1 = 5m - 4m

6 = m

Örnek: ( 124 )5 + ( 103 )5 = ( m2n )7 ise, m = ?

( 124 )5 + ( 103 )5 = ( 232 )5 bulunur. ( 232 )5 sayısını onluk tabana çevirelim.

25 5 1

( 2 3 2 )5 = 25.2 + 5.3 + 1.2 = 50 + 15 + 2 = 67 olur.

Şimdi de onluk tabandaki 67 sayısını 7' lik tabana çevirelim.

67 : 7 = 7.9 + 4 olur. Bölüm 9 ve kalan 4 dir.

9 : 7 = 7.1 + 2 olur. Kalan 2 ve bölüm 1 olur. En sondaki bölümle kalanlar tersten yazılarak, ( 67 )10 = ( 124 )7 bulunur.

Buradan,

( m2n )7 = ( 124)7
olduğundan, m = 1 bulunur.

TABAN ARITMETIGI
Herhangi bir sayi sisteminden Onluk sayi sIstemIne geçiş:
Herhangi bir sayi sisteminden Onluk sayi sistemine geçebilmek için, basamak (hane) çözümlemesi yapilmalidir. n, bir sayi sisteminin tabanini göstermek üzere
n >= 2 olacak sekilde bir dogal sayi ise, (abcde)n sayisi onluk sayi sistemine söyle önüstürülür:
Dogaldir ki, sayi sistemlerinin özelligine göre, sayiyi olusturan rakamlar daima tabandan küçük olmalidir.
Örnek: (1234)5 = ( ? )10 taban dönüsümünü yapalim.

Örnek: (10110)2 = ( ? )10 taban dönüsümünü yapalim.

Örnek: (218)9 = ( ? )10 taban dönüsümünü yapalim.
81 9 1
( 2 1 8 )9 = 92.2 + 91.1 + 90.8
= 81.2 + 9.1 + 1.8
= 162 + 9 + 8
= 179
Örnek: (305)7 = ( ? )10 taban dönüsümünü yapalim.
49 7 1
( 3 0 5)7 = 72.3 + 71.0 + 70.5
= 49.3 + 7.0 + 1.5
= 147 + 0 + 5
= 152
Onluk sayi sIstemInden DIger sayi sIstemlerIne geçIs:
Onluk tabandaki bir sayi diger tabanlara çevrilirken geçilmesi istenen taban hangi taban ise, onluk tabandaki sayi o sayiya bölünmelidir. Bölme islemi, bölümdeki sayi taban sayisindan küçük olana kadar yapilmalidir. Yeni tabandaki sayi, en sondan baslanarak önce bölüm sonra da kalanlar sirasiyla yazilarak elde edilir.
Örnek: (194)10 = ( ? )5 taban dönüsümünü yapalim.

Örnek: (179)10 = ( ? )9 taban dönüsümünü yapalim.

Onluk taban disindakI bIr tabandan baska bIr tabana geçIs:
Verilen sayi önce Onluk tabana çevrilir. Sonra da Onluk tabandaki sayi, geçilmek istenen tabana dönüstürülür. Yani, n verilen taban ve m istenen taban ise, dönüsümün mantigi su sekildedir:

Örnek: (132)5 = ( ? )8 taban dönüsümünü yapalim.
Önce 5 tabanindaki 132 sayisini Onluk tabana çevirelim.
25 5 1
( 1 3 2 )5 = 52.1 + 51.3 + 50.2 = 25.1 + 5.3 + 1.2 =25 + 15 + 2 = 42
Simdi de Onluk tabandaki 42 sayisini 8 tabanina çevirelim.

Böylece, (132)5 = (52)8 olarak bulunur.
Örnek: (1011)2 = ( ? )7 taban dönüsümünü yapalim.
Önce 2 tabanindaki 1011 sayisini Onluk tabana çevirelim.
8 4 2 1
( 1 0 1 1 )2 = 23.1 + 22.0 + 21.1 + 20.1 = 8.1 + 4.0 + 2.1 + 1.1
= 8 + 0 + 2 + 1 = 11
Simdi de Onluk tabandaki 11 sayisini 7 tabanina çevirelim. 11 sayisini, 7 ye böldügümüzde, bölüm 1 ve kalan da 4 olacagindan,
(11)10 = (14)7
sonucunu elde ederiz. Dolayisiyla, (1011)2 = (14)7 olarak bulunur.
Onluk taban disindakI tabanlardakI sayilarin tekligi veya çiftligi:
Sayinin tabani çift ise, sayinin son rakamina (birler basamagindaki rakamina) bakilarak karar verilir. Sayet sayinin son rakami çift ise, sayi çifttir. Sayet sayinin son rakami tek ise, sayi tektir. Örnegin, (12345)8 = Tek, (1236)8 = Çift olur.
Sayinin tabani tek ise, sayinin rakamlari toplamina bakilarak karar verilir. Sayet sayinin rakamlari toplami çift ise, sayi çifttir. Sayet sayinin rakamlari toplami tek ise, sayi tektir. Örnegin, (234)7 = Tek, (2361)7 = Çift olur.
Onluk taban disindakI tabanlarda arItmetIk Islemler:
Toplama IslemI:
Örnek: (101)2 + (11)2 = ( ? )2
( 1 0 1 )2
+ ( 1 1 )2


alıntıdır.

Medineweb 04 Ağustos 2012 22:01

Cevap: KPSS Matematik Konu Özeti
 
kesir çeşitleri


1. Payı paydasından küçük olan kesirlere basit kesir denir.
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
II. Payı paydasından büyük veya eşit olan kesirlere bileşik kesir denir.


[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] III. Bir sayma sayısı ile birlikte gösterilen kesirlere tam sayılı kesir denir. [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

alıntıd

Medineweb 04 Ağustos 2012 22:02

Cevap: KPSS Matematik Konu Özeti
 
kesirleri birbirine çevirme

Bir bütünün eş parçalarından bir kısmına kesir denir. Bu kesri gösteren sayıya da kesir sayısı denir. Kesir sayısı yerine kesir de kullanılır. Sayı sözcüğü kullanılmadığı zaman da bunun kesir sayısı olduğu anlaşılır.

Kesir, biri üstte, öteki altta, araları bir çizgiyle ayrılan iki doğal sayıyla yazılır. Üstteki sayıya pay, alttakine payda, ve bunları ayıran çizgiye de kesir çizgisi ya da bölü çizgisi denir.


Payda, bütünün ya da çokluğun kaç eş parçaya ayrıldığını, pay ise bu eş parçalardan kaç tanesinin alındığını gösterir.

Bütün ya da çokluk 0′dan (sıfır) çok sayıda parçaya ayrılacağından, kesirlerde paydada 0 (sıfır) bulunmaz.

Kesirler, ya paylardan ya da paydalardan başlayarak okunur.

kesri, “a bölü b” veya “b de a” diye okunur.

Payı bir olan kesre, kesrin birimi denir.

Bir kesrin pay ve paydasındaki sayılar eşit ise, o kesrin değeri 1′dir.

Bir bütünün 2 eş parçasından birine yarım, dört eş parçasından birine çeyrek denir.

5 eş parçaya bölünmüş bir bütünden, 2 parça seçilip alınırsa, bu kesir olarak gösterilir.

Örnek
Çocuk, bir pastanın ’sini yemişse geriye ne kadar pasta kaldı?

Pastanın bütünü 1′dir. Bu yüzden yediği miktar, bütünden çıkartılırsa, geriye kalan pasta miktarı bulunur. Yenilen kısmı gösteren kesrin paydası 7 ve bütün 1 olduğundan, 1 yerine işlemi kolaylaştırmak adına kullanılır. Buna göre;
bulunur. Geriye pastanın ’si kalmıştır.
Kesirler sayı doğrusunda gösterilebilir. Sayı doğrusunda, iki tam sayı arası bir bütün olarak alınır.

Kesirlerin Birbirine Çevrilmesi:
Bileşik kesirle tam sayılı kesirler, birbirine çevrilebilir.

Örnek 1
bileşik kesrini tam sayılı kesre çevirmek için pay, paydaya bölünür. Bölme işleminde bölünen 7, bölen 5, bölüm 1 ve kalan 2 olur. bileşik kesrinin tam sayılı kesir karşılığı,olarak bulunur.

Bir tam sayılı kesri bileşik kesri çevirmek için önce tam kısımla payda çarpılır. Çıkan sonuç pay ile toplanır ve elde edilecek olan bileşik kesrin payına yazılır. Bileşik kesrin paydası, tam sayılı kesrin paydasıyla aynıdır.

Örnek 2
tam sayılı kesri bileşik kesre çevirirken yukarıda anlatılan yöntem uygulanır.

1 x 5 + 2 = 7

bulunur. Bu sayı bileşik kesrin payı olur. Payda değişmez.
= olur.

Kesirlerde Bölme İşlemi:
Birinci kesir olduğu gibi kalır. İkinci kesir ters çevrilip payı paydaya, paydası paya yazılır ve çarpılır.

Kesirlerde Çarpma İşlemi:
Kesirlerin payları çarpılıp çarpımın payına, paydaları çarpılıp çarpımın paydasına yazılır.

Örnek 1
Bir kesrin 0 ile çarpımı sıfırdır.

Örnek 2

Bir kesrin pay ve paydası aynı sayma sayısıyla çarpılırsa, kesrin değeri değişmez. Kesir bu sayıyla genişletilmiş olur. Bir kesirle, genişletilmiş kesir birbirine denktir.

Kesirlerde Çıkarma İşlemi:
İşlem yapılacak kesirlerde bütünler aynı sayıda eş parçalara bölünmüş olmalıdır. Yani paydaları eşit olmalıdır. Farklı sayılarda bölünmüşseler, paydalar eşitlenir. Paydalar, en küçük ortak kata eşitlenir.

Çıkarma işleminde paylar çıkarılır ve sonuç pay kısmına yazılır. Eşit payda işlem sonucunun paydasına yazılır.

Kesirlerde Toplama İşlemi:
İşlem yapılacak kesirlerde bütünler aynı sayıda eş parçalara bölünmüş olmalıdır. Yani paydaları eşit olmalıdır. Farklı sayılarda bölünmüşseler, paydalar eşitlenir. Paydalar, en küçük ortak kata eşitlenir.

Toplama işleminde paylar toplanır ve toplam, toplam kesrinin payı olur.

Kesirleri Ondalık Kesir Biçiminde yazma:
Kesrin payının, paydasına bölümüle elde edilen değer, kesrin ondalık kesir cinsinden karşılığını verir.

basit kesrinin ondalık kesir şeklindeki yazımı 0,25′dir. Bu değeri bulmak için 1, 4′e bölünmüştür.

bileşik kesrinin ondalık kesir şeklindeki yazımı 2, değeridir (2,33333…).

Kesirlerin Karşılaştırılması:
Kesir sayıları arasında sıralama yapılabilir.

Kesirlerin paydaları eşitse; paylarına göre sıralama yapılır.

Verilen kesirlerin paydaları eşitse payı büyük olan kesir daha büyüktür.

Kesirlerin payları eşitse; paydalarına göre sıralama yapılır. Verilen kesirlerin payları eşitse paydası büyük olan daha küçüktür.

Payları ve paydaları eşit değilse; pay ya da paydalar eşitlendikten sonra sıralama yapılır.

alıntıdır.

Medineweb 04 Ağustos 2012 22:02

Cevap: KPSS Matematik Konu Özeti
 
rasyonel sayılarda sıralama


Pozitif kesirlerde sıralama yapılırken aşağıdaki yollardan biri kullanılır.
I. Yol:
Paydaları eşit olan (eşitlenen) kesirlerden payı en büyük olan diğerlerinden daha büyüktür.
II. Yol:
Payları eşit olan (eşitlenen) kesirlerden paydası en küçük olan diğerlerinden daha büyüktür.
III. Yol:
Payı ile paydası arasındaki farkı eşit olan, basit kesirlerde, payı en büyük olan diğerlerinden daha büyüktür.

Payı ile paydası arasındaki farkı eşit olan, bileşik kesirlerde, payı en büyük olan diğerlerinden daha küçüktür.
Yukarıda verilen yöntemler pozitif kesirlerde geçerlidir. Negatif kesirlerde ise durum tersinedir.
F. İKİ RASYONEL SAYI ARASINDAKİ SAYILAR

[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] arasında sayılamayacak çoklukta rasyonel sayı vardır. Bunlardan bazılarını bulmak için b ile d nin OKEK i bulunur. Verilen kesirlerin paydaları bulunan OKEK inde eşitlenir. İstenen koşuldaki sayıyı bulmak için kesirler genişletilebilir.
Üx, [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] kesirlerinin ortasındaki bir sayı ise,
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
alıntıdır.

Medineweb 04 Ağustos 2012 22:03

Cevap: KPSS Matematik Konu Özeti
 
Konu:Rasyonel sayılarla işlemler – Rasyonel Sayılarla Toplama ve Çıkarma İşlemleri

Tam sayılarda toplama ve çıkarma işlemini bilen bir öğrenci için rasyonel sayılarda toplama ve çıkarma işlemi çok basit bir konu olacaktır.

iki rasyonel sayı verildiğinde geçen sene öğrendiğimiz kesirlerde toplama ve çıakrma işleminin kurallarını uygulayacağız.
Örneğin;

4-2=2

5+3=8

derken birden karşımıza negatif tam sayıların da olduğu işlemler çıktı ve

-4-2=-6

-5+3=-2 gibi sonuçları gördük.
Kesirlerde de paydaları eşitledik, payları topladık veya çıkardık, paydalar ise sabit kaldı.
Şimdi bunların ikisini birarada kullanacağız.
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
yukarıda iki rasyonel sayı ile ilgili işlemler verilmiş.
aradaki işlem toplama işlemi ve paydaların aynı olması gerektiği için eşitledik paydayı.
Payda eşitlendikten sonra payda ile işimiz bitti ve paya bakıyoruz.
Artık tam sayılarda toplama ve çıkarma işleminin özelliğini kullanabiliri.
-3+2 nin sonucunun -1 e eşit olduğunu biliyoruz ve pay kısmına -1 yazıyoruz.
Sonuç -1/6 olarak bulundu.
Aradaki işlem toplama da olsa, çıkarma da olsa aynı mantığı kullanıyoruz.
Soru: Rasyonel sayılar tam sayılı kesir şeklindeyse veya ondalık sayı şeklineyse nasıl sonuca gideriz?
Cevap: Tam sayılı kesirleri bileşik kesre çevirirsek hiçbir zaman hata yapmayız.
Aynı şekilde, sayılardan biri ondalık sayı, diğeri rasyonel sayı ise; ya ikisini de rasyonel sayıya çevirin, ya da ikisini de ondalık sayıya çevirin.
Not: Rasyonel sayılarda toplama işleminde değişme ve birleşme özelliği vardır.
Çünkü sayıların yeri değişse de sonuç değişmez buna değişme özelliği denir.
Sayıları değişik sırayla toplasak da sonuç değişmez bu da birleşme özelliğine örnektir.

alıntıdır

Medineweb 04 Ağustos 2012 22:03

Cevap: KPSS Matematik Konu Özeti
 
ÖZDEŞLİKLER ve ÇARPANLARA AYIRMA ( I )


Tanım : Sabit olmayan, birden fazla polinom un çarpımı biçimin de yazılamayan polinomlara indirgenemeyen polinomlar denir.
Baş katsayısı bir olan indirgenemeyen polinomlar Asal polinomlar denir.
* P(x) = x2 + 4 , Q(x) = 3x2 + 1, R(x) = 2x – 3 , T(x) = - x + 7
Polinomları indirgenemeyen polinomlar dır.
P(x) = x2 + 4 baş katsayısı 1 olduğundan asal polinom dur.
Tanım : İçindeki değişkenlerin alabileceği her değer için doğru olan eşitliklere özdeşlik denir.
* a) x3 (x2 – 2x) = x5 – 2x4 b) a2 (x + y)2 = a2 x2 + a2 y2 özdeşlik
c) a2 (x +y)2 = a2 x2 + a2 y2 özdeşlik değildir.
ÖNEMLİ ÖZDEŞLİKLER



I) Tam Kare Özdeşliği:


a) İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
b)İki Terim farkının Karesi : (a – b)2 = a2 – 2ab + b2
İki terim toplamının ve farkının karesi alınırken; birincinin karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.
c)Üç Terim Toplamının Karesi:(a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc) şeklindedir.


II) İki Terim Toplamı veya Farkının Küpü :
a)İki Terim Toplamının Küpü : (a + b)3 = a3 + 3a2b + 3ab2 + b3
b) İki Terim Farkının Küpü : (a – b)3 = a3 – 3a2b + 3ab2 – b3
Birinci terimin küpü;( ) birincinin karesi ile ikincinin çarpımının 3 katı, (+) birinci ile ikincinin karesinin çarpımının 3 katı,( ) ikincinin küpü biçimindedir. Bu açılımlara Binom Açılımıda denir
Not:. Paskal Üçgeni kullanılarak 4.,5.,6.,...Dereceden iki terimli lerin özdeşliklerini de yazabiliriz.
III) İki Kare Farkı Özdeşliği: (a + b) (a – b) = a2 – b2
İki terim toplamı ile farkının çarpımı; birincinin karesi ile ikincinin karesinin farkına eşittir
IV) xn + yn veya xn - yn biçimindeki polinomların Özdeşliği :
i) İki küp Toplam veya Farkı : a3 + b3 = (a + b) (a2 – ab + b2)
a3 – b3 = (a – b) (a2 + ab + b2)
ii) a4 + b4 = (a + b) (a3 – a2b + ab2 – b3)
a4 – b4 = (a2 + b2) (a + b) (a – b)
iii) a5 + b5 = (a + b) (a4 – a3b + a2 b2 – ab3 + b4)
a5 – b5 = (a – b) (a4 + a3b + a2 b2 + ab3 + b4)
iv) a6 + b6 = (a + b) (a5 – a4b + a3 b2 – a2b3 + ab4 – b5)
a6 – b6 = (a – b) (a2 + ab + b2) (a+ b) (a2 + ab + b2)
v) a7 + b7 = (a + b) (a6 – a5b + a4b2 – a3b3 + a2b4 – ab5 + b6)
a7 – b7 = (a – b) (a6 + a5b + a4b2 + a3b3 + a2b4 + ab5 + b6)


Özdeşlikleri aşağıdaki şekilleriyle düzenleyerek kullanabiliriz


1)x2 + y2 = (x + y)2 – 2xy
2)x2 + y2 = (x – y)2 + 2xy
3) (x – y)2 = (x + y)2 – 4xy
4) (x + y)2 = (x – y)2 + 4xy
5) x3 – y3 = (x – y)3 + 3xy (x – y)
6) x3 + y3 = (x + y)3 – 3xy (x + y)
7) x2 + y2 + z2 = (x + y + z)2 – 2 (xy + xz + yz)


1) İki sayının toplamı 17, kareleri toplamı 145 ise; bu sayıların çarpımı kaçtır?
x2 + y2 = (x + y)2 – 2xy 2ab = 289 – 145
145 = (17)2 – 2ab 2ab = 144 ab = 72 C= 72
2) a – b = 6 (a + b)2 = (a – b)2 + 4ab (a + b)2 = 44
a . b = 2 = ( 6 )2 + 4.2 (a + b) =
a + b = ? = 36 + 8 =
3) a – 2b = 3 ise; a2 + 4b2 = ? a2 + 4b2 = (a – 2b)2 +2. a2b
a . b = 2 = ( 3 )2 + 2. 2 .2 = 17
4) a + b = 12 ise; a . b = ? (a + b)2 = (a – b)2 + 4ab 4 ab = 108
a – b = 6 ( 12 )2 = ( 6 )2 + 4ab ab = 27
5) ise; x2 + y2 = (x – y)2 + 2xy
20
6) ise;
Ç = {- 4 , 4}
7) m + n =8 x3 + y3 = (x + y)3 – 3xy(x + y)
m . n = 1m3 + n3 = (m + n)3 – 3mn (m + n)
m3 + n3 = ? = ( 8 )3 – 3 . 1 . 8 = 488
8) a3 – b3 = 50 x3 – y3 = (x – y)3 + 3xy(x – y)
a – b = 2 ise; a3 – b3 = (a – b)3 + 3ab(a – b)
a . b = ? 50 = 8 + 6ab 6ab = 42 ab = 7
9) ise; x3 – y3 = (x – y)3 + 3xy(x – y)
= ( 3 )3 + 3.1.( 3 ) = 36
10) ise; x3 + y3 = (x + y)3 – 3xy(x + y)
198
11) a + b + c = ? a2 + b2 + c2 = (a + b + c) – 2(ab + aç + bc)
ab + ac + bc = 12 = ( 7 )2 – 2 ( 12 )
a2 + b2 + c2 = ? = 49 – 24 = 25
12) ise;


= 15
13) ise; C = 120
14) ise; C = 63
15) ise; C = 154
16)ise;C = 75
17)ise; C = 999


ÇARPANLARA AYIRMA KURALLARI



1)Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma :Her terimde ortak olarak bulunan çarpan, parantez dışına alınır. Her terimin ortak çarpana bölümü parantez içine yazılır
1) Aşağıdaki ifadeleri Çarpanlarına ayırınız.
a) 3a + 3b =3(a + b) b) 5m – 10mn = 5m (1 – 2)
c) 12x + 9y =3(4x + 3y) d) 3a2b – 2ab2 = ab (3a – 2b)
e) 3ax + 3ay – 3az f) (a – b) x + 3 (a – b)
g) (m – n) – (a + b)(m – n) h) – a – b – x2 (a + b)
ı) x2(p – 3) + ma2 (3 – p) i) 1 – 2x + m (2x – 1)
2)Gruplandırma Yaparak Çarpanlara Ayırma :Bütün terimlerde ortak çarpan yoksa, terimler ikişer, ikişer, üçer, üçer guruplandırılır. Gruplar ayrı, ayrı ortak çarpanlarına ayrılır.
2) a) mx + ny + my + nx b) xy – xb – yb + b2
c) x4 – 4 + 2x3 – 2x d) 2x2 –3x – 6xy + 9y
e) x3 – x + 1 – x2 f) x4 – x + x3 – 1
g) ab(c2 – d2) – cd (a2 – b2) h) ac2 + 3c – bc – 2ac – 6 + 2b
ı) mn(zi + y2) + zy (m2 + n2) i) a2b2 + 1 – (a2 + b2)
3)Tam Kare şeklindeki İfadeleri Çarpanlara Ayırma :Polinom üç terimli ise, ilk ve son terimin kare köklerinin çarpımı nın iki katı ortadaki terimi veriyorsa, bu tam kare şeklinde ifadedir a2 + 2ab + b2 =(a + b)2, a2 – 2ab + b2 = (a – b)2
3) a) x2 + 4xb + 4b2 b) 4a2 + 12ab + 9b2 c) 4a2b2 – 4abc + c2
4) a) a2b + 8ab +16b3 b) 2m3 – 28m2 +98m c) 4x3y – 12x2y2 + 9xy3
4)İki Kare Farkı Şeklindeki İfadeleri Çarpanlara Ayırma :Polinom iki terimli , işaretleri farklı, kare kökleri alınıyorsa; Bu Polinom iki kare farkı biçiminde çarpanlarına ayrılır. a2 – b2 = (a + b) (a – b)
5) a) 25 – 9a2b2 b) x4 – 1 c) (m – n)2 – (m + n)2
6) a) 18x2 – 2y2 b) 2a2b3 – 32b c) 12x3y – 75xy5
7) a) 9a2 – 6a +1 – b2 b) x2 – 12x + 36 – 4y2 c)16m2 – n2 – 6n – 9
d)1 – x2 – 2xy – y2 e) m2 – n2 – 3m + 3n f) a2 – 25b2 – a + 5b
g) a2 – 4m2 – 12mn – 9n2 h) 9a2 –16m4 – 12axy + 4x2y2
5)İki Küp Toplamı - Farkı İfadeleri Çarpanlara Ayırma: a3 + b3 = (a + b) (a2 – ab + b2),a3 – b3 = (a – b) (a2 + ab + b2)
8) a) a3 + 8 b) 8 – m3 c) x3 + 1 d) 27a3 – 64 e) x3a3 + b3
9) a) 81m3 – 3n3 b) 24x3y – 3y c) 2x + 54x4
10) a) (x +y)3 – 8 b) a3 + 8(a - b)3 c) (m – n)3 + 1
6)xn yn biçimindeki polinomları Çarpanlara Ayırma:
11) a) x4 + 1 = (x + 1) (x3 – x2 + x – 1)
b) x4 – 1 =(x2 + 1) (x + 1) (x – 1)
c) x5 + 25 = (x + 2) (x4 – 2x3 + 4x2 – 8x + 16)
d) x5 – 1 = (x – 1) (x4 + x3 + x2 + x + 1)
7)Bir Terim Ekleyip Çıkararak Çarpanlara Ayırma:Verilen İfade uygun bir terim ekleme ve çıkarma yolu ile tam kare ve iki kare farkı şeklinde çarpanlara ayırma işlemine benzetilir


12) 4x4 + 7x2 + 4 ifadesini Çarpanlarına ayırınız.
4x4 + 7x2 + 4 = 4x4 + 7x2 + 4 + x2 – x2 = 4x4 + 8x2 + 4– x2
= (2x2 + 2)2 – x2
2x2 2 = (2x2 + 2 – x) (2x2 + 2 + x)
2.2x2.2 = 8x2 = (2x2 – x + 2) (2x2 + x + 2)


13) x2 – 6x + 5 ifadesini x’li terimin kat sayısının yarısının karesini
ekleyip-çıkararak çarpanlarına ayırınız.
x2 – 6x + 5 + 32 – 32 = (x2 – 6x + 32) – 32 + 5 = (x – 3)2 – 4
= (x – 3 – 2) (x – 3 + 2) = (x – 5) (x – 1)


14) a) m2 + 2m – 24 b) a4 + a2 + 1 c) 16a4 + 4a2b2 + b4
d) a2 – 6ab + 8b2 +2b – 1 (Not: b2 yi bir ekleyip - çıkar )



8) x2 + bx + c şeklindeki üç terimlileri Çarpanlarına Ayırma :
Çarpımları c, toplamları b olan iki sayı arayacağız.
Çarpımları (+) ise işaretleri aynı, Çarpımları (–) ise işaretleri farklı
Toplamları (+) “ “ (+) olur Toplamları (+) “ büyüğü (+) olur
Toplamları (–) “ “ (–) olur Toplamları (–) “ büyüğü (–) olur


15)a) x2 + 5x + 6 b) x2 – 5x + 6 c) x2 + 7x + 6 d) x2 – 7x + 6
e) x2 + 5x – 6 f) x2 – 5x – 6 g) x2 + x – 6 h) x2 – x – 6
ı) x2 – 7x – 18 i) x4 – x2 – 30 k) m2 – 6m – 27 l) x2 – 3xy – 10y2
m) –x2 – 2x + 3 n) x2 – 13x + 30 o) x2 + 2y2– 3xy



9) ax2 + bx + c şeklindeki üç terimlileri Çarpanlarına Ayırma :
ax2 + bx + c = (mx + p) (nx + q)
mx p
nx q (mx.q + nx.q = bx oluyorsa)
16) 6x2 + 7x – 3 = (3x – 1) (2x + 3) olur.
3x – 1 (3x . 3 – 1. 2x = 9x – 2x = 7x olduğundan)
2x + 3
17) a) 3x2 – 2x – 8 b) 3x2 – 7x + 2 c) 2m2 + 5mn – 12n2
d) 8a2 – 2ab – b e) 4x2 + 21x + 5 f) 36a2 – 33ab – 20b2
g) 4m2 + 11m – 3 h) 6a2 + 5a – 6 ı) 12a2 – 8ab – 15b2
i) 2m2 – 10m + 12 k) 3x2 + 3x – 18 l) 3 n2 + 30n + 48
18) a2 + 2ab + b2 = 3 ve c2 + 2ac + 2bc = 6 ise; a + b + c = ?
c2 + 2ac + 2bc = 6 T.T.T
a2 + b2 + c2 + 2ab + 2ac + 2bc = 9 (a + b + c)2 = 9 Ç = {-3, 3}
19) 91) x = 4 , y = 2 ise, x5 – 5x4y + 10x3y2 – 10x2y3 + 5xy4 – y5 = ?
a) 16 b) 32 c) 64 d) 128 e) 256
x5 – 5x4y + 10x3y2 – 10x2y3 + 5xy4 – y5 = (x – y)5 = (4 – 2)5= 32
20) 97) , ise; a) 6 b) 8 c)10
a + b yerine ab yazılırsa
(a . b)2 – 2ab – 24 = 0 olur. a .b = y diyelim.
y2 – 2y – 24 = 0 y – 6) (y + 4) = 0 y = - 4 ve y = 6
21) ise, C = 8
olur. (özdeşlikte yerine yazalım )
22) ise;C = 36
olur. (özdeşlikte yerine yazalım )
23) ise;C = 12
olur. (yerine yazalım )
24) işleminin sonucu kaçtır?
123 =153 – 30 ve 183 =153 + 30 yazılırsa
=153 olur


alıntıdır

Medineweb 04 Ağustos 2012 22:03

Cevap: KPSS Matematik Konu Özeti
 
ÇARPANLARA AYIRMA YÖNTEMLERİ

1) Ortak Çarpan Parantezine Alma:
Terimlerin herbirinde ortak olan ifadelerin alınıp ifadeyi çarpan durumuna getirmektir.

örnek: ax + bx + cx = x (a + b +c)

örnek: 3 (a-b) . c - 6 (a-b) . d = 3 (a-b) . (c-2d)

2) Gruplandırarak Çarpanlara Ayırma:
Terimler çarpanlara ayrılırken grup, grup alınarak çarpanlarına ayrılır.

örnek: ax - by + aj/ - bx = a (x +y) -b (x+y)
= (a - b) . (x + y) (gruplandırmada ortak çarpanma getirildiğine dikkat ediniz.)

örnek: a2 + ab + bc + ac = a (a + b) + c (a + b) =(a + c) . (a + b)

örnek: 2ax - 4ay - x + 2y = 2a (x - 2y) - (x - 2y) = (x-2y) .(2a-1)

3) İki Kare Farkı:
İki terimden oluşmalı, terimler arasındaki işaret (-) ve terimlerin karekökleri olmalıdır.

örnek: 81 x2 - 16 = (9x - 4) . (9x + 4)

örnek: 1 - 25a2 = (1 - 5a) . (1 + 5a) 4)İki Küp Toplam ve Farkı:
örnek: a3 + b3 = (a + b). (a2 - ab + b2)
örnek: 1-27x3 = 13 - (3x)3 = (1-3x). (1 + 3x + 9x2)
örnek: 27a3+8 = (3a)3+(2)3 = (3a+2) . (9a2-6a+4)
örnek: 3-24x3=3(1 -8x3) = 3[13-(2x)3] = 3(1 -2x) . (1 +2x + 4x2)
5)Tamkareli İfadeler:
a2 + 2ab + b2 = (a + b)2 = (a + b). (a + b)
örnek: x2+ 2 + \ = (x + i)2= (x +1). (x + 1)
6) Ax2 + Bx + c Şeklindeki Üç Terimli İfadeler:
Birinci ve üçüncü terimlerin çarpanları alt alta yazılarak çapraz çarpıldığından sonra toplanır. Toplamın sonucu orta terimi veriyorsa karşılıklı olarak terimler alınıp çarpım durumunda yazılır.


örnek: x2 - x - 2 = (x - 2) . (x + 1)

alıntı


Medineweb 04 Ağustos 2012 22:04

Cevap: KPSS Matematik Konu Özeti
 
ONDALIK SAYILARLA ARİTMETİKSEL İŞLEMLER
Ondalık Kesirler (Sayılar):

m Є Z ve n Є Z+ olmak üzere, m / 10n şeklinde yazılabilen kesirlere Ondalık Kesir, sayılara da Ondalık Sayılar denir. Yani, paydası 10' un kuvveti olan kesirler (sayılar) dir.
Örnekler:
1/10 = 0,1 sıfır tam onda bir
2/10 = 0,2 sıfır tam onda iki
3/10 = 0,3 sıfır tam onda üç
25/100 = 0,25 sıfır tam yüzde üç
2/1000 = 0,002 sıfır tam binde iki
25/10 = 2,5 iki tam onda beş
15/10 = 1,5 bir tam onda beş
103/100 = 1,03 bir tam yüzde üç
2345/1000 = 2,345 iki tam binde üçyüzkırkbeş
Bir ondalık kesir, ondalık sayı şeklinde yazıldığında, virgülden önceki kısma ondalık sayının tam kısmı, virgülden sonraki kısma da ondalık sayının ondalık kısmı denir.
Bir a/b (b≠0) kesrinin, payının paydasına bölünmesiyle elde edilen bölüme de, Ondalık sayı denir. Ayrıca, buna rasyonel (kesrin) sayının ondalık açılımı da denir. Bu işlem, bir kesrin (rasyonel sayının), ondalık kesre (sayıya) çevrilmesinde kullanılır.
Örnek:
1/5 sayısını ondalık sayıya çeviriniz.
Çözüm:
1/5 in paydasını 10' un kuvveti şekline çevirmek için hem payını hem de paydasını 2 ile genişletelim. Bu takdirde,
1/5 = (1.2)/(5.2) = 2/10 = 0,2
buluruz.
Örnek:
12/300 rasyonel sayısını ondalık sayıya çeviriniz.
Çözüm:
12/300 ün paydasını 10' un kuvveti şekline çevirmek için hem payını hem de paydasını 3' e bölelim. Bu takdirde,
12/300 = (12:3)/(300:3) = 4/100 = 0,04
buluruz.
Örnek: 3/5 = (3.2)/(5.2) = 6/10 = 0,6
Örnek: 7/25 = (7.4)/(25.4) = 28/100 = 0,28
Örnek: 2/125 = (2.8)/(125.8) = 16/1000 = 0,016
Örnek:
1/3 sayısının ondalık açılımını bulunuz.
Çözüm:
1/3 rasyonel sayısını kaç ile genişletirsek genişletelim paydasını 10' un kuvveti şeklinde yazamayız. Bu nedenle, bu sayının payını paydasına bölmeliyiz. Dolayısıyla, bu bölme işlemini yaparsak,
1/3 = 0,33333333... = 0,3
elde ederiz. Buradaki ondalık kısımdaki 3 sayısı sonsuza dek devam etmektedir. Yani, 3 sayısı devreden sayıdır. Bundan dolayı, 0,3 sayısına, devirli ondalık sayı denir. Devirli ondalık sayılarda devreden kısım tek basamaklı olabileceği gibi, iki veya daha fazla basamaklı da olabilir. Örneğin,
0,25 devreden kısım iki basamaklı
2,25367 devreden kısım üç basamaklıdır.
Uyarı 1:
Tamsayıların önüne yazılan sıfırların bir anlamı yoktur. Örneğin,
2, 02, 002, 0002, 00002, 000002, ...
sayılarının hepsi 2 sayısını gösterir. Burada 2' den önceki sıfırların bir anlamı yoktur. Bu yüzden kullanılmazlar.
Uyarı 2:
Bir kesrin ondalık açılımında ondalık kısımdaki rakamların en sağına yazılan sıfırların bir anlamı yoktur. Örneğin,
1,2
1,20
1,200
1,2000
sayılarının hepsi 1,2 dir.

ONDALIK SAYILARIN RASYONEL SAYIYA ÇEVRİLMESİ
Devirsiz ondalık sayılar, rasyonel sayı şekline şöyle çevrilir: Paya ondalık sayının tümü yazılır, paydaya da 1 ve 1' in ardına ondalık kısımdaki rakam sayısı kadar 0 yazılır
Devirli ondalık sayılar, rasyonel sayı şekline şöyle çevrilir: Paya ondalık sayının tümünden tam kısım dahil devretmeyen kısmının farkı yazılır, paydaya da ondalık kısmın önce devreden rakam sayısı kadar 9 devretmeyen rakam sayısı kadar 9' un ardına 0 yazılır
36,4539 = 36,454
1,849 = 1,85
Ondalık kısımdaki 9 rakamı devrediyorsa, 9 rakamı atılır ve önündeki rakam 1 arttırılır.

ONDALIK SAYILARLA DÖRT İŞLEM
TOPLAMA ve ÇIKARMA İŞLEMİ:
Virgüller aynı hizaya getirilir ve toplama veya çıkarma işlemi yapılır.
Örnek:
2,15 + 35,242 = ?
2,150 + 35,242 = 37,392 bulunur.

ÇARPMA İŞLEMİ:
Virgüller gözönüne alınmadan normal çarpma işlemi yapılır. Sonra da, iki ondalıklı sayının ondalık kısmındaki hane sayısının toplamı kadar sağından başlanarak virgülle ayrılır.
Örnek:
4,25 . 23,4 = ?
4,25
23,4
x
---------------
1700
1275
850
+
----------------
99,450

BÖLME İŞLEMİ:
Pay ve paydadaki ondalık sayılarda virgül kalmayacak şekilde eşit sayıda basamak kaydırma işlemi yapılır. Sonra da normal bölme işlemi yapılır.
Örnek:
= 650/65
= 10
Örnek:
= 70/58
= 35/29
Örnek:
x=0,2 ve y=0,4 ise,
x=0,2=2/9
y=0,4=4/9

Örnek:
0,36 sayısı m/n rasyonel kesrine eşitse, m-n farkı kaçtır?
Çözüm:
0,36 = (36-3)/9 = 33/9 = 11/3
m/n = 11/3 olduğundan, m=11 ve n=3 olur. Dolayısıyla, m-n=11-3=8 bulunur.
Örnek:

işleminin sonucu kaçtır? (ÖSS-2001)
a) 0,1 b) 0,2 c) 10 d) 20 e) 100
Çözüm:
10/1 +10/1-10/1= 10+10-10 = 20-10=10
Doğru seçenek c şıkkıdır.


alıntıdır.

Medineweb 04 Ağustos 2012 22:04

Cevap: KPSS Matematik Konu Özeti
 
eşitsizlik ve mutlak değer


x, y, z e R olmak üzere,

a) Eşitsizliklerin her iki tarafı aynı sayı ile toplanıp çıkarılabilir.

y Eşitsizliğin her iki tarafı aynı pozitif sayı ile çarpılıp veya bölünebilir.
d) Eşitsizliğin her iki tarafı negatif bir sayı ile çarpılıp bölündüğünde eşitsizlik yön değiştirir.
d) Yönleri aynı olan eşitsizlikler taraf tarafa toplanabilir.
e) Eşitsizliğin çözüm kümesi yazılırken, eşitlik varsa sayının kendisi dahil edilecek, eşitlik yoksa sayı dahil edilmeyecek.

[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
MUTLAK DEĞER ÖZELLİKLLERİ VE İŞLEVLERİ

Tanım:Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile gösterilir.
x , R nin elemanıdır ve
x ={x, x > 0 ise
{-x,x < 0 ise
şeklinde tanımlanır.
f(x) ={f(x),f(x) > 0 ise
{-f(x),f(x)< 0 ise
1) Örnek: x =-3 için x-5 - x+2 ifadesinin eşiti kaçtır?

Çözüm: -3-5 - -3+2 = 8-1=7
2) Örnek: a<b<0 olduğuna göre,
a+b - a-b ifadesinin eşiti nedir?

Çözüm: a+b - a-b = -(a+b)- -(a-b)
=-a-b+a-b
=-2b

ÖZELLİKLERİ

V a,b elemandır R için
1) a > 0 dır
2) a = -a
3) - a < a < a
4) a.b = a . b
5) b= 0 için a/b = a / b
6) a+b < a + b (üçgen eşitsizliği)
7) n elemanıdır Z* olmak üzere a^ = a ^
8) a > 0,x elemanıdır R ve x < a ise -a <x <a
9) a > 0,x elemanıdır R, x > a ise x > a veya x < -a dır.

10) IaI-IbI < Ia+bI
11)I-aI=IaI, Ia-bI=Ib-aI
12)IaI . IaI = a . a
13)I f(x) I = a ise f(x )= a veya f(x) = -a
14)I f(x) I < a ise -a< f(x) < a
15)I f(x) I > a ise f(x) > a U -f(x) > a

İSPATLAR
Öz.1)a = 0 ise IaI = I0I = 0
a > 0 ise IaI = a >0
a < 0 ise IaI = -a >0 dır.
O halde IaI > 0 dır.
Öz.2)a ve -a sayılarının 0 dan uzaklıkları eşit olduğundan IaI=I-aI dır.
Öz.6)V a elemanıdır R için -IaI < a < IaI
V b elemanıdır R için -IbI < b< IbI
+
-IaI-IbI< a+b<IaI+IbI
O halde Ia+bI < IaI+IbI dir.
Öz.7)V a,b elemanıdır R için Ia.bI=IaI.IbI idi.
Ia^I=Ia.a.a...aI=IaI.IaI.IaI...IaI=IaI^ dir.
(n tane) ( n tane )
Öz.3)a sayısı için a<0,a=0,a>0 durumlarından biri vardır.
a)a < 0 ise IaI = -a dır.
IaI > 0 olduğundan -IaI < 0 dır.
-IaI= a <0 < IaI ise -IaI < a < IaI dır.
b)a=0 ise IaI = I0I = 0 ve -Ia I= 0 olacağından –IaI < a < IaI dır.
c)a > 0 ise IaI = a ve -IaI < 0 dır.
-IaI< 0 < IaI = a ise -IaI < a < IaI dır.
MUTLAK DEĞERLİ DENKLEMLER
Soru: I3x-7I = 5 denklemini çözünüz.
Çözüm:I3x-7I = 5 ise; 3x-7 = 5 veya 3x-7 = -5 olur.
1-3x-7 = 5 2- 3x-7=-5
3x = 12 3x = 2
x = 4 x = 2/3
Ç={4,2/3}
Soru:Ix-7I = 7-x eşitliğini sağlayan kaç tane doğal sayı vardır?
Çözüm: Ix-7I = 7-x ise
x-7 < 0 ise x < 7olup x doğal sayıları 0,1,2,3,4,5,6,7 dir.
O halde 8 tane doğal sayı vardır.

Soru: 5-2x = 2 denkleminin çözüm kümesi nedir ?

BİRİNCİ DERECEDEN MUTLAK DEĞERLİ EŞİTSİZLİKLER
Soru: Ix-7I < 3 eşitsizliğinin çözüm kümesini bulunuz.
Çözüm: Ix-7I < 3 = -3 < x-7 < 3 = -3+7 < x < 3+7
=4<x<10 Ç={5,6,7,8,9}
Soru: 2x-3 < 2 eşitsizliğini sağlayan tamsayıları bulunuz.
Çözüm: 2x-3 < 2 = -2 <2x-3 < 2
= -4 < 2x-3 < 4
= -4+3 < 2x < 4+3
= -1< 2x < 7
= -1/2 < x < 7/2
Ç={0,1,2,3}
Soru:I 3x+2 I+9 > 2 eşitsizliğini çözünüz.
Çözüm:I 3x+2I+9 > 2 = I 3x+2I > -7
***Bu eşitsizlik x in her değeri için sağlanır.Bu nedenle; Çözüm kümesi R dir.
Soru: I Ix-5I-2 I < 3 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:I Ix-5I-2 I < 3 = -3 < Ix-5I -2 < 3
= -1 < Ix-5I < 5
Ix-5I >-1 eşitsizliği daima doğrudur.
Ix-5I < 5 = -5 < x-5 < 5
= 0 < x < 10
Bu aradaki tamsayılar 1,2,3,4,5,6,7,8,9 olup 9 tamsayı vardır.
İKİNCİ DERECEDEN MUTLAK DEĞERLİ EŞİTSİZLİKLER
Soru: I 2x-7 I < 2 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:I 2x-7 I < 2 = -2 < 2x-7 < 2
= -2+7 < 2x < 2+7
= 5 < 2x < 9
= 5/2 < x < 9/2
Bu durumda çözüm kümesi {3,4} olur.
Soru: I 3x+1 I > -8 denkleminin çözüm kümesini bulunuz.
Çözüm:V x elemanıdır R için I 3x+1 I > 0 olduğundan
I 3x+1 I > -8 eşitsizliği daima doğrudur. Buna göre denklemin çözüm kümesi Reel sayılar kümesidir.
Soru: I 3-3x I < 9 eşitsizliğinin R deki çözüm kümesi nedir?
a) 0<x<2 b) -2<x<4 c) -1<x<0 d) 0<x<2 e) 2<x<4
Çözüm: I 3-3x I<9 = -9 < 3-3x < 9
-9+3 < 3x < 9+3
= -6 < 3x < 12
= -6/3 < x < 12/3
= -2 < x < 4 ( Cevap B dir.)

MUTLAK DEĞER İLE İLGİLİ KARIŞIK ALIŞTIRMALAR

Soru 1: I 3x-1 I+5 = 0 denkleminin çözüm kümesi nedir?
Çözüm: I 3x-1 I+5 = 0 ise I 3x-1 I = -5 olur.
*** V a elemanıdır R için IaI > 0 dır.
Bu nedenle sorunun çözüm kümesi O dir.
Soru 2: I Ix-4I -5 I = 10 denklemini sağlayan x değerlerini bulunuz.
Çözüm: I Ix-4I –5 I = 10
Ix-4I-5 =10 veya Ix-4I-5 = -10
Ix-4I = 5 veya Ix-4I = -5
Ç = {O}
x-4 = 15 veya x-4 = -15 x = 19 veya x = -14
Soru 3: I Ix-1I+5 I = 8 denkleminin kökleri toplamı kaçtır?


alıntıdır.

Medineweb 04 Ağustos 2012 22:06

Cevap: KPSS Matematik Konu Özeti
 
mutlak değerin özellikleri


[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

alıntıdır.

Medineweb 04 Ağustos 2012 22:06

Cevap: KPSS Matematik Konu Özeti
 
üslü sayılar


Üslü sayı, bir doğal sayının kendisi ile çarpımlarının kısa şekilde gösterilmesidir.

3.3=3² üs kuvvettaban n


Örnekler:

4.4.4=4³7.7.7.7=7410.10.10.10.10.10=106

Kurallar:
1)Bir sayıya üs yazılmamışsa üs 1’dir

3=3x 0=0¹ 45

2)Üssü 0 olan sayma sayıları 1’e eşittir.

4°=1 54°=1
1°=1 0°≠1

3)Üssü 1 olan sayılar tabana eşittir.

5¹=5 81¹=81
2¹=2 28¹=28

4)1 sayısının bütün kuvvetleri 1’dir.

1°=1 13635=1
1234731=1 1333=1

5)Üslü doğal sayılarda üs ile taban yer değiştirilirse sayının değeri de değişir.

(42 ve 24 hariç)

6)İki sayı birbirine eşit ve tabanları aynı ise bu iki sayının üsleri de eşittir. 3a=3b a=b


Üslü Sayılarla İşlem Yaparken

Pozitif tam sayıların tüm kuvvetleri pozitiftir.
Sıfır dışındaki tüm sayıların sıfırıncı kuvveti (+1) dir.
Sıfırın,sıfır dışındaki bütün kuvvetleri sıfırdır.
Negatif tam sayıların çift kuvvetleri pozitif, tek kuvvetleri negatiftir.
Negatif sayıların üstleri alınırken, üs parantez üstünde ise hem sayıyı hem işareti etkiler, işareti sayıyı etkilemez.

alıntıdır.

Medineweb 04 Ağustos 2012 22:07

Cevap: KPSS Matematik Konu Özeti
 
KAREKÖKLÜ SAYILAR

Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır.

Karesi 2 olan c doğal sayısını ele alalım.

a2 = 2 ise a sayısını a = şeklinde gösterebilir ve ‘karekök iki ‘diye okuyabiliriz.Acaba bu
sayısı hangi sayılar arasındadır?Bunu inceleyelim:
12 =1 1=1
(1,5)2 = 1,5 1,5=2.25 tir
O halde sayısı;1< <1,5
Buna göre sayısı 1 ile 1,5 arasındadır,sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel sayı değildir;çünkü iki tam sayının bölümü şeklinde yazılamaz.
İşte sayı ekseni üzerinde görüntüsü olduğu halde,rasyonel olmayan , ,…gibi sayılara irrasyonel(rasyonel olmayan) sayılar denir.I ile gösterilir.
İrrasyonel sayılar kümesi ile rasyonel sayılar kümesinin birleşim kümesinin birleşim kümesine de reel (gerçek) sayılar denir.

R=Q U I Q ∩ I =O
N  Q R I R

R+=Pozitif reel sayılar
R-=Negatif reel sayılar
R= R- U {0} U R+

Reel sayılar sayı eksenini tamamen doldurur.Sayı doğrusunda her noktaya bir reel sayı karşı gelir,yani sayı doğrusu ile reel sayılar kümesi bire bir eşlenebilir.

a bir pozitif reel sayı olmak üzere; = b ifadesine kareköklü ifade denir.
a bir gerçek(reel) sayı ve m ,1 den büyük bir tamsayı ise sayısına ,a sayısının m inci kuvvetten kökü denir.m sayısına da kökün derecesi denir.

da, kök derecesi 2 dir.
sayısının reel sayı olup olmama durumlarını inceleyelim:
m, pozitif tek tamsayı ve a R ise sayısı bir reel sayıdır.
, , reel sayılardır.

m,pozitif çift tamsayı ve a R+ ise sayısı bir reel sayıdır.
, , reel sayılardır.

m pozitif çift tamsayı ve a R- ise sayısı bir reel sayı değildir.
, , reel sayılar değildir.

NOT: , , sayıları reel sayı değildir ;çünkü hiçbir reel sayının karesi –1,-4 ve –9 değildir.

KAREKÖK İÇİNDEKİ İFADENİN KÖK DIŞINA ÇIKARILMASI

Karekök içinde çarpım veya bölüm durumunda verilen ifadeler 2 veya 2 nin katı kuvvetinde yazılabilirse karekök dışına çıkarılabilirler.

a R+ ,m Z ise 2m = a2m/2 = am
a,b R+ ve b ≠ 0 ise 2.b2 = a.b 2/b2 = a/b dir.
a,b R+ ve n Z olmak üzere ; 2n.b = an.
Örnekler:

= 2 = 22/2 = 2

10 = 310/2 =35=243

4 /58 = 2.2/52.4 =72/54

a R için, 2 =

2 = = 2 = 3

KAREKÖKLÜ BİR SAYIYI a ŞEKLİNDE YAZMAK :
işleminin sonucu kaçtır?
48 2
24 2 = 2.22.3
12 2 = 2.2
6 2 = 4
3 3
1

3 işleminin sonucu kaçtır?
504 2
252 2 3 =3 2.2.32.7
126 2 = 3.2.3.
63 3 = 18
21 3
7 7
1

UYARI:Karekök dışına çıkarılan sayılar kökün önünde bulunan sayı ile çarpılarak yazılır.

KAREKÖK DIŞINDAKİ ÇARPANIN KÖK İÇİNE ALINMASI

Kareköklü bir sayının katsayısını kök içine almakiçin katsayının karesini kök içindeki sayı ile çarpar,kök içine yazarız.
a = 2.b
Örnek:
2 = 2.3 = =

RASYONEL SAYILARIN KAREKÖKÜ

a,b R+ olmak üzere ,
= /

Örnekler:

= / = 2/ 2 =

= = 2/ 62 =

= = 2/ 2 = =

UYARI:Tam sayılı olan kesirler birleşik kesire çevrilerek pay ve paydanın ayrı ayrı karekökleri alınır.

ONDALIK SAYILARIN KAREKÖKÜ

Ondalık sayıların virgülden sonraki basamak sayıları çift ise tam karekökleri olabalir:
Örnek:
= =

= =

= = 5 /

NOT: sayısının karekökünü pratik olarak şöyle alırız.Virgül yokmuş gibi kabul edersek, =2 dir.Oaha sonra virgülden sonraki her iki basamk için bir basamak sayıyı virgülle sağdan sola doğru ayırırız.
=0.2

Örnek:
= =0,003

1 2 3

KAREKÖKLÜ SAYILARDA DÖRT İŞLEM

1)Toplama-Çıkarma
Kareköklü sayılarda toplama-çıkarma işlemi yapılırken karekök içindeki sayıların aynı olması veya aynı hale getirilmesi gerekir.Sonra ortak çarpan parantezine alınarak işlem yapılır.

+ - = (a+b-c)
+

Örnekler:

- - + işleminin sonucu nedir?
- + =
=

- - + - işleminin sonucu nedir?
Kök içlerini aynı yapmaya çalışmalıyız.
- + - = - + -
= + - -
= -

2)Çarpma
Körekök içinde verilen sayılar çarpılıp kök içine yazılır.Mümkünse kök dışına çıkarma işlemi yapılır.

a,b R+ ise , . = ; . = 2 =a ve . =

Örnekler:
- . = =
- . = = =
- . =
=
= 6.
=
Kareköklü sayının n kuvveti kök içindeki sayının n kuvvetidir.
( )2 = 2 ( )n = an n (x >0)
Örnek:

( )4 = 4 = = 5.5 = 25


NOT: ( + ). ( - ) = ( )2 – ( )2 = a – b
Örnek:

( + ). ( - ) = ( )2 – ( )2 = 7-3 = 4




3)Bölme
Karekök içinde verilen sayılar bölünüp kök içine yazılır.Sadeleştirmeler yapılıp,mümkünse kök dışına çıkarılır.
a,b R+ ve b 0 ise / = ve / = dır.
Örnekler:

- / =
- : = = = /2
- / = =

PAYDAYI RASYONEL YAPMA

Bölüm şeklindeki kareköklü bir ifadede, paydayı karekökten kurtarmaya, paydayı rasyonel yapmak denir.Paydayı kökten kurtarmak için ;pay ve paydayı ,paydanın eşleniği ile çarparız.

nın eşleniği ve . =a dır.
( + ) nin eşleniği ( - ) ve ( + ). ( - ) = a – b dir.
( - ) nin eşleniği ( + ) dir.
( - b) nin eşleniği ( + b) dir.
- nin eşleniği 2 + + 2 dir.
+ nin eşleniği 2 - + 2 dir.
nin eşleniği dir.
m nin eşleniği n-m

1)Paydada varsa:
Pay ve paydayı ile çarparız.

Örnekler:

- 1/ = 1. / . = /2
- 5/ = 5. / . = /10 = / 2

2)Paydada + varsa :
Pay ve paydayı - ile çarparız.

Örnek:

5 5. (2 - )
=
( ). (2 - )

= 5. (2 - )
22 – ( )2

= 10 -

4 - 3

=10 - = 5(2 - )

BAZI KURALLAR:

1) n = an/m

2) = x , xm =a

3) . =

4) : =

5) - + = (a – b + c)

6) a > 0, b > 0, c > 0 m,n,k pozitif tam sayıdır.
2 . b = an

7) =

8) = 2. bk.c

9) =

10) =

11)( )n = a

12) ( )m = m

13) a R+ ise = n. b

14) p = =

15) =x ise x= 1+
2

16) =a+1

17) k =


alıntı

Medineweb 04 Ağustos 2012 22:07

Cevap: KPSS Matematik Konu Özeti
 
SAYI PROBLEMLERİ
A. PROBLEM ÇÖZME YÖNTEMİ

Denklem kurma ile ilgili soruları çözerken aşağıda anlatılan yöntemin kullanılması sorularda kolaylık sağlayacaktır.

1. adım :
2. adım :
3. adım :
4. adım :

5. adım : Soruda verilenler belirlenir.
Soruda istenen tesbit edilir.
Soruda verilenler matematik diline çevrilir.

3. adımda elde edilen denklemler, denklem çözme metotlarından yararlanılarak çözülür.
Bulunan sonucun, soruda istenen olup olmadığı kontrol edilir.

B. MATEMATİK DİLİNE ÇEVİRME
Sorularda verilen ifadelerin matematik diline çevrilmesini örneklerle açıklayalım.

Herhangi bir sayı x olsun :
ä Bir sayının 7 fazlası, x + 7 dir.
ä Bir sayının 5 eksiğinin yarısı,
ä Bir sayının yarısının 3 eksiği,
ä Bir sayının 2 katının 5 fazlası, 2x + 5 tir.
ä Bir sayının 3 fazlasının 4 katı, 4 . (x + 3) tür.
ä Bir sayının 8 eksiğinin 3 katının 7 fazlası, 3 . (x – 8) + 7 dir.
ä Payı paydasının 2 katının 4 eksiğine eşit olan kesir,
ä Bir sayının sinin ünün
ä Bir sayının ünün toplamı,

Denklem Kurma Problemlerinin (Sayı, Kesir, Yaş, İşçi-Havuz, Hareket, Yüzde, Faiz ve Karışım) daha iyi anlaşılabilmesi için bu konuların başlarına konuyla ilgili örnekler konmuştur. Bu örnekleri incelemeniz konuyu anlamanızı kolaylaştıracaktır.


Örnek 1
Biri diğerinin 3 katından 4 fazla olan iki doğal sayının farkı 80 dir. Buna göre, bu iki sayının toplamları kaçtır?

A) 132 B) 156 C) 160 D) 182

Çözüm
Küçük sayı  x
Büyük sayı  3x + 4
Farkları  3x + 4 – x = 2x + 4 olur.
2x + 4 =
2x =
x =
x = 80
76
76 : 2
38 (küçük sayı)
Büyük sayı  3x + 4 = 3 . 38 + 4 = 118
Toplamları  118 + 38 = 156 olur.
Cevap B


Örnek 2
Ardışık dört çift sayının toplamı 372 dir. Bu sayıların en büyüğü kaçtır?

A) 36 B) 56 C) 68 D) 96

Çözüm
l. sayı x
ll. sayı x + 2
lll. sayı x + 4
lV. sayı x + 6
+
Toplam =
4x =
x = 4x + 12 = 372
372 – 12 = 360
360 : 4 = 90
lV. sayı  x + 6 = 90 + 6 = 96 olur.
Cevap D

Örnek 3
Bir yemek kuyruğunda Ali sıranın tam başında, Orhan ise tam ortasındadır. Ali ile Orhan arasında 12 kişi olduğuna göre, bu yemek sırasında kaç kişi vardır?

A) 27 B) 28 C) 29 D) 30

Çözüm

Ali ile Orhan arasında 12 kişi varsa Orhan’ın önünde 12 + 1 = 13 kişi ve arkasında 13 kişi vardır. Orhan sıranın tam ortasında olduğuna göre 13 önünde, 13 arkasında, 1 de kendisi
Toplam  13 + 13 + 1 = 27 kişi vardır.
Cevap A

Örnek 4
120 tane cevizi Bürge 2 pay, Berkin 3 pay alacak şekilde paylaşıyorlar.
Buna göre, Bürge kaç ceviz almıştır?

A) 28 B) 30 C) 48 D) 50

Çözüm
l. yol :
Bürge  2 pay
Berkin  3 pay
Toplam  5 pay = 120
120 : 5 = 24 (1 pay)
Bürge  2 pay  24 x 2 = 48 tane almıştır.

ll. yol :
Bürge  2x Berkin  3x
2x + 3x =
5x = 120
120 ise,
x = 120 : 5 = 24 olur.
Bürge  2x = 2 . 24 = 48 tane almıştır.
Cevap C

Örnek 5
Bir öğrenci tanesi 5000 ve 6000 liralık silgilerden 10 tane alarak 56 000 lira ödüyor.
Bu öğrenci silgilerin kaç tanesini 5000 liradan almıştır?

A) 4 B) 5 C) 6 D) 7

Çözüm
5000 liralık

x tane 6000 liralık

(10 – x) tane

5000x + 6000.(10 – x) =
5000x + 60 000 – 6000x =
60 000 – 56 000 =
4 000 =
x = 56 000 lira
56 000
1000x
1000x
4 olur.
Cevap A


Örnek 6
10 kişilik bir arkadaş grubu eşit katılımla top almaya karar veriyorlar. Fakat içlerinden 3 kişi vazgeçince diğerleri 30 000 er lira fazla ödüyor.
Buna göre, topun fiyatı kaç liradır?

A) 500 000 B) 560 000 C) 700 000 D) 840 000

Çözüm
l. yol :
10 – 3 = 7 kişi (geriye kalanlar)
7 x 30 000 = 210 000 lira (3 kişi yerine)
210 000 : 3 = 70 000 lira (1 kişinin ödemesi gereken)
10 x 70 000 = 700 000 lira olur. (topun fiyatı)

ll. yol :
Bir kişinin ödediği miktar  x
Topun fiyatı  T olsun;
10 . x = T
7 . (x + 30 000) = T
10x = T
7x + 210 000 = T

10x =
10x – 7x =
3x =

7x + 210 000
210 000
210 000 ise, x = 70 000 liradır.
T = 10x olduğundan
T = 10 . 70 000 = 700 000 lira olur.
Cevap C


alıntıdır.

Medineweb 04 Ağustos 2012 22:07

Cevap: KPSS Matematik Konu Özeti
 
HAREKET PROBLEMLERİ
V : Hareketlinin hızı

x : Hareketlinin V hızıyla t sürede aldığı yol
t : Hareketlinin V hızıyla x yolunu alma süresi ise,
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

Aralarında x km olan iki araç saatte V1 km ve V2 km hızla aynı anda birbirine doğru hareket ederlerse karşılaşma süresi[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

Bu iki araç aynı anda çembersel bir pistin, aynı noktasından zıt yönde aynı anda hareket ederlerse karşılaşma süresi yine [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

Aralarında x km olan iki araç saatte V1 km ve V2 km hızla aynı anda aynı yönde hareket ederlerse arkadaki aracın (V1 hızlı araç) öndekini yakalama süresi[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]


Bu iki araç aynı anda çembersel bir pistin aynı noktasından aynı yönde hareket ederse hızı büyük olan aracın hızı küçük olan aracı
yakalama süresi yine[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
Eşit zamanda V1 ve V2 hızlarıyla alınan yolda hareketlinin ortalama hızı,
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
Belirli bir yolu V1 hızıyla gidip V2 hızıyla dönen bir aracın ortalama hızı,
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]


alıntıdır.

Medineweb 04 Ağustos 2012 22:08

Cevap: KPSS Matematik Konu Özeti
 
İŞÇİ - HAVUZ PROBLEMLERİ
Bir işi;
A işçisi tek başına a saatte,
B işçisi tek başına b saatte,
C işçisi tek başına c saatte

yapabiliyorsa;
Eğer üçü t saatte işi bitirmiş ise bu ifade 1 e eşittir.

A işçisi x saat, B işçisi y saat C işçisi z saat çalışarak işi bitiriyorsa,
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

1. Bir halıyı Gülten 9 saatte Nurten 18 günde dokumaktadır. İkisi beraber bu halının ‘ünü kaç günde dokur?

A) 2 B) 3 C) 4 D) 5 E) 6

2. Murat bir işin yarısını a günde, Mehmet ise bu işin tamamını 6a günde bitiriyor. İkisi beraber bu işin yarısını 12 günde bitirebiliyorsa, Mehmet işin ‘ünü kaç günde bitirir?

A) 24 B) 32 C) 42 D) 56 E) 96

3. Arzu bir işin tamamını 40 günde, Gürkan ise bu işin tamamını 20 günde bitirebiliyor. Arzu 14 gün, Gürkan 8 gün çalışırsa işin kaçta kaçı biter?

A) B) C) D) E)

4. Serkan ile Ebru bir işi beraber 6 günde bitirebiliyor. Ebru, Serkan’dan bu işin tamamını 5 gün önce bitirebiliyorsa, Bu işi Serkan kaç saatte bitirir?

A) 10 B) 12 C) 15 D) 18 E) 24

5. Fatih’in çalışma kapasitesi Kadir’in çalışma kapasitesinin 3 katı Davut’un çalışma kapasitesinin yarısıdır. Üçü beraber bir işi 12 günde bitirebiliyorsa Davut bu işin yarısını ne kadar zamanda bitirir?

A) 10 B) 20 C) 30 D) 40 E) 50

6. Mahir bir işin 2/3 ünü tek başına 4 günde, Ekin ise aynı işin 3/5 ini 6 günde yapabiliyor. İkisi beraber bu işin yarısını kaç günde yaparlar?

A) 15/4 B) 15/8 C) 15/11 D) 15/13 E) 1

7. Murat ile Mustafa bir işi beraber 12 günde bitirebilmektedir. 9 gün beraber çalıştıktan sonra Murat işi bırakıyor. Ve Mustafa kalan işi 6 günde bitirebiliyor. Buna göre Mustafa bu işin tamamını kaç günde bitirebilir?

A) 6 B) 12 C) 18 D) 24 E) 30

8. Kapasiteleri aynı olan 8 işçi beraber çalışmaya başlıyorlar. Her saatte bir işçi işten ayrıldığında son kalan işçide kalan bir saatte işi bitirebiliyorsa bir işçi işin tamamını kaç saatte bitirir.

A) 6 B) 12 C) 18 D) 24 E) 36

9. Bir usta 2 günde 3 masa, 1 çırak 10 günde 2 masa bitirebilmektedir. Buna göre 51 masayı ikisi beraber kaç günde bitirebilirler?

A) 10 B) 15 C) 20 D) 25 E) 30

10. Haldun ile Taner’in beraber bitireceği bir işi Murat tek başına aynı sürede bitirebiliyor. 3’ü birlikte 12 gün de bitirebiliyorsa Murat bu işin tamamını kaç günde bitirir?

A) 12 B) 18 C) 24 D) 36 E) 48

11. Bir usta bir işi 20 günde bitirebiliyor. Usta 6 gün çalıştıktan sonra yanına bir yardımcı alıyor. Ve kalan işi 6 günde bitirebiliyorsa yardımcı bu işin tamamını kaç günde bitirebilir?

A) 10 B) 12 C) 15 D) 18 E) 24

12. Boş bir havuzu A ve B muslukları 1 ve 3 saatte doldururken bir C musluğuda 2 saatte boşaltıyor. Üçü beraber açıldıktan kaç dakika sonra havuz dolar?

A) 48 B) 56 C) 64 D) 72 E) 80

13. A musluğu havuzu 20 saatte, B musluğuda havuzu 40 saatte boşaltıyor. A musluğu 15 saat açık bırakılıyor. A musluğu kapatıldıktan sonra 25 saatte B musluğu açılıp kapanıyor. Buna göre son durumda havuzun kaçta kaçı doludur?

A) B) C) D) E)

14. Bir musluk havuzu 9 saatte doldurabiliyor. Musluğun debisi % 25 oranında azaltılırsa havuz kaç saatte dolar?

A) 8 B) 10 C) 12 D) 14 E) 16

15. Eşit kapasitedeki 16 musluktan bir kısmı havuzu 16 saatte dolduruyor. Muslukların tamamı 8 saatte doldurabiliyorsa başlangıçta kaç musluk açılmıştır?

A) 6 B) 8 C) 10 D) 12 E) 16

16. Bir havuzu A musluğu 20 saatte doldururken B musluğu 15 saatte boşaltabiliyor. 10 saat boyunca A musluğu havuzu doldurduktan sonra B musluğu da açılıyor. Buna göre B musluğu açıldıktan 5 saat sonra havuzun kaçta kaçı dolar?

A) B) C) D) E)

17.Şekildeki birinci havuz musluktan akan suyla diğerleri de bir önceki havuzdan taşan suyla dolmaktadır. III. Havuz 9 saatte dolduğuna göre 10 saat sonra IV. Havuzun kaçta kaçı dolu olur?

A) B) C) D) E)

CEVAPLAR:
1-C,2-B,3-C,4-C,5-A,6-B,7-D,8-E,9-E,10-C,11-C,12-D,13-C,14-C,15-B,16-C,17D


alıntıdır.

Medineweb 04 Ağustos 2012 22:08

Cevap: KPSS Matematik Konu Özeti
 
1. Birinci Dereceden Bir Bilinmeyenli Denklemler
Tanım :
a * 0 ve a, b e R olmak üzere ax+b=0 denklemine, bilinmeyeni x olan "I. Dereceden Bir Bilinmeyenli Denklem" denir.
ax + b = O denkleminin çözümü için x yalnız bırakılmalıdır.

Örnek: 7x + 28 = O denkleminin çözüm kümesini bulalım.

Çözüm: 7x + 28 =0
7x =-28 x =-4 Ç -{-4}

Örnek: -2 . (3x + 1) + 4 . (2 - x) = 1 + 3 . (x + 1) denkleminin çözüm kümesini bulunuz.
Çözüm: -2 . (3x + 1) + 4 . (2 - x) = 1 + 3 . (x + 1)
-6x-2 + 8-4x = 1 +3x + 3
- 10x + 6 = 3x + 4
-13x = -2
x = 13


Birinci Dereceden İki Bilinmeyenli Denklem Sistemleri
a, b, c, a,, bv c, e R olmak üzere ax + by + c = 0 a^ + + e, = 0
biçimindeki iki denkleme birinci dereceden iki bilinmeyenli denklem sistemi denir. Çözüm kümesi bulunurken yok etme, yerine koyma gibi yöntemler kullanılır.

a. Yok Etme Metodu
Bu yöntemde denklem sisteminde bulunan bilinmeyenlerden birinin katsayılarını zıt olarak eşitler, denklemleri taraf tarafa toplarız. Böylece bilinmeyenlerden biri yok edilir. Elde edilen bir bilinmeyenli denklem çözülür ve bilinmeyenlerden biri bulunur. Bulunan değer, denklemlerden birinde yazılır ve diğer bilinmeyen bulunur.

Örnek: 4x - 5y = 31 denklem sisteminin çözüm 2x + y = 5 kümesini yok etme metoduyla bulalım.

Çözüm: 4x - 5y = 3
-2. / 2x + y = 5

(İkinci denklem -2 ile çarpılır.)
Yerine Koyma Metodu
Denklemlerden birinde bilinmeyenlerden biri, diğeri cinsinden bulunur ve diğer denklemde yerine yazılarak elde edilen denklem çözülür. Bulunan değer denklemlerden herhangi birinde yerine yazılarak diğer bilinmeyen bulunur.

Örnek: 4x - 5y = 3 j denklem sisteminin çözüm 2x + y = 5 ' kümesini yerine koyma metodu ile bulunuz.

Çözüm:2x + y = 5 => y = 5-2x
4x - 5y = 3 => 4x - 5 . (5 - 2x ) = 3 4x-25+ 10x = 3 14x = 28 x = 2
y = 5 - 2x denkleminde x = 2 yazılırsa y = 5 - 2 . 2 = 1 bulunur.
Ç = {(2, 1)}



alıntıdır.

Medineweb 04 Ağustos 2012 22:09

Cevap: KPSS Matematik Konu Özeti
 
birinci dereceden bir bilinmeyenli denklemler


İçinde bilinmeyen bulunan ve bilinmeyenin aldığı bazı değerler için doğru olan cebirsel eşitliklere denklem denir. Denklemleri adlandırırken içindeki bilinmeyen sayısına ve bilinmeyenin derecesi 1 olan denklemlere ise birinci dereceden bir bilinmeyenli denklemler denir.

Bu denklemlerin çözümü yapılırken;


Bilinmeyenler eşitliğin bir tarafında,bilinenler diğer tarafta toplanır.
Bir taraftan diğer tarafa ifade tersiyle aktarılır.örnek
x+2+4=10 10-4=6 6-2=4 x=4 yani Ç[4]olur.

Matematik ile ilgili bu madde bir taslaktır. İçeriğini geliştirerek Vikipedi'ye katkıda bulunabilirsiniz.

Pratik Çözüm

Bir denklemi pratik çözmek için ;

Bilinmeyenler eşitliğin bir yanında, bilinenler eşitliğin diğer yanında toplanır. Eşitliğin bir yanından diğer yanına geçen terimin işareti değişir.

Her iki yanda toplama çıkarma işlemleri yapılır ve her iki yan bilinmeyenin katsayısına bölünerek bilinmeyen yalnız bırakılır. Denklem çözülmüş olur.

ÖRNEKLER

1. x + 6 = 10 denkleminin çözüm kümesini bulalım:

Çözüm: x + 6 = 10 denkleminde (+6) nın toplama işlemine göre ters elemanı olan (-6), eşitliğin her iki yanına eklenirse eşitlik bozulmaz.

Buna göre; x + 6 = 10 x + 6 + (-6) = 10 + (-6) x + 0 = 4 x = 4 olur. Ç = {4} olur.

Verilen bir denklemin çözümünün doğru yapılıp yapılmadığının araştırılmasına, denklemin sağlaması denir.

Bulunan kök, denklemde yerine yazılarak denklemin sağlaması yapılır böylece bulunan kökün doğruluğu kontrol edilir.

4 sayısının x + 6 = 10 denklemini sağlayıp sağlamadığını kontrol edelim:

x = 4 için x + 6 = 10 4 + 6 =10 10 = 10 olduğundan çözüm doğrudur. x + 6 = 10 x = 10 – 6 x = 4 ve Ç = {4} tür.

Demek ki; her iki şekilde yapılan çözüm, aynı elemanı veren çözüm kümesidir.

2. Verilen denklem parantezli olursa; aşağıda yapıldığı gibi, önce dağılma özeliği uygulanarak parantezler kaldırılır. Sonra da içerisinde bilinmeyeni olan terimler eşitliğin bir tarafına, öteki terimler de diğer tarafına geçirilir. Gerekli işlemler yapılarak denklem çözülür.


2.(x + 3) + 7 = 25 – 2.( x - 2 )

Önce, çarpma işleminin toplama ve çıkarma işlemleri üzerine dağılma özeliklerini uygulayalım

Çözüm:

2.(x + 3) + 7 = 25 – 2.( x - 2 ) 2x + 6 + 7 = 25 – 2x + 4 2x + 13 = -2x + 29 2x + 2x = 29 – 13 4x = 16 x = 16 : 4 x = 4 ve Ç = { 4 } olur.

3. Verilen denklem kesirli olursa, çözümü için önce paydalar eşitlenir. Denklem paydadan kurtarılır. Bunun için, eşitliğin iki yanını ortak payda ile çarpmak gerekir. Sonra da örnek çözümlerde belirtilen kurallara göre denklem çözülür.

3.(x–2) _ 2–x _ _ x _ 5 denkleminin çözüm 4 2 ¯ 5 2 kümesini bulalım:

Çözüm: Paydaları eşitlersek:

3.( x- 2) – 2.( 2 – x ) – 4x _ x - 10 4 ¯ 4

3x – 6 – 4 + 2x – 4x =x – 10 3x + 2x – 4x – x = -10 + 6 + 4 5x - 5x = -10 + 10 0.x = 0

alıntıdır.

Medineweb 04 Ağustos 2012 22:09

Cevap: KPSS Matematik Konu Özeti
 
İkinci Dereceden Denklemler

İKİNCİ DERECE DENKLEMİ Babilliler, Mısırlılar ve Çinlilerde x + y = a ve x - y = b denklem çiftinde, yanlışı ılı memeyle x = (a + b)/2 ve y = (a-b)/2 olduğunu biliyorlardı.

Çinliler ayrıca matris bloklarını ve bambu çubukları kullanarak bu denklem sistemini çözebiliyorlardı. Daha sonraki gelen halklarda bu geometrik şekilleri kullanarak bu denklem sistemine sayısal çözümler bulmuşlardır. Eski halklarda sistemli bir ispat yöntemi bulunmadığından hu tür işlemler daha çok deneme biçiminde yürütülüyordu.
Çinlilerde de sistemli bir ispat yöntemi yoktu. Bunları söylerken, eski Babil, Mısır ve Çin anlatılıyor. Çinlilerin ikinci derece denklemine dönüşen problemleri Dokuz Bölüm isimli kitapta iki tane denklemle verilir. Bu denklemler arasında bilinmeyenin birisi yok edilerek sonuçta ikinci derece denklemi bulunur. Sonra denklem kendi yöntemleriyle çözülür.
Çinlilerin Dokuz Bölüm isimli kitabındaki 11. problem şöyledir. Bir kapının boyu eninden 6.8 birim daha fazladır. Kapının köşegeninin uzunluğu da 10 birimdir. Kapının enini ve boyunu hesaplayınız. Problemin ifadesine göre boyutlar x ve y ise x-y = 6.8 ve x2 + y2=100 denklem çifti yazılır. Çinliler bu problemi daha çok Pisagor yöntemiyle çözerler.
Eğer bu problemi biz x - y = d ve x2 + y2 = c2 biçiminde yazarsak, (x + y)2 = 4xy + (x - y)2 ve c2 = 2xy+(x - y)2 yada 4xy = 2c2 - 2(x - y)2 yazılır. Buradan (x + y)2 = 2c2-(x - y)2 ya da x+y= yazılır.
Eşitliğin her iki yanı 2 sayısıyla bölünürse, olur.
Buradan x +y = 12.4 gelir. x-y = 6.8 olarak verilmişti.
Buradan x = 9.6 ve y = 2.8 olarak bulunur. Çinlilerin Dokuz Bölüm isimli kitaplardaki problemler daha çok doğrusal ve ikinci derece olan denklem sistemleri biçimlerine dönüşür. Bu tür örnekler Çinlilerde fazladır. Oysa Eski Babillilerdeki tabletler x + y = b ve xy = c biçimlere dönüşen problemlerle doludur. Babillilerin problemleri daha çok alan ve çevre türünde düzenlenmiştir.
Alanı c ve çevresi 2b olan çok sayıda Babil tableti bulunmuştur. Bu tabletler x = b/2 + z ve y = b/2 - z boyutlu dikdörtgen ve c alanı t. . (b/2 + z) (b/2 - z) = (b/2)2 - z2 biçiminde alınarak hesaplar yapılmıştır.
Bu hesaplamalara göre olur. Buradan ve y = değerleri istenilen denklem sisteminin çözümüdür. Burada yazdığımız modern gösterimler, Babillilerin tabletlerinde yapılan çözümlerin yorumlanması ve açıklanması türendedir. Babilliler aslında formül vermemişlerdir. Her problemi çözerken çözümde kullandıkları yöntemler bunlardır. Babilli yazıcılar bu işlemi geometrik olarak nasıl yapmışlar ve nasıl tabletlere geçirmişlerdir? Şimdi onu gösterelim.
Yine x + y = b ve xy = c olarak verilsin. Burada x değerine uzun kenar ve y değerine de kısa kenar diyorlar. Daha kısa deyimle x uzunluk ve y de genişlik olarak alınıyor. Buna göre problemin ifadesinden genel olarak x + y = b ve xy = c gösterimleri geliyor. Modern dille bu iki denklem sisteminden uzunluk denen x ve genişlik denen y değeri hesaplanacak.
Bu hesaplamaları geometrik olarak şu şekle dayandırıyorlar. Yani komutlarından böyle yaptıkları anlaşılıyor. Önce b sayısını ikiye bölüyor ve b/2 kenarlı kareyi çiziyor. Burada b/2 = x - (x - y)/2 = y + (x - y)/2 biçiminde ve b/2 = (x + y)/2 olduğundan, b/2 kenarlı karenin üa-nı xy = c alanından (x - y)/2 kenarlı karenin alanı kadar daha fazladır. Yani, x+y=b ve xy=c olan denklem sisteminin çözümünün geometrik yorumu olur. Yukarıdaki şekle göre b/2 sayısına sayısını bir kez ekler ve bir kez de çıkarırsak sırasıyla

SORU-1 :
SORULAR
1)2x 2 - 8x + 6 = 0 denklemini çözünüz.


CEVAP-1 :
∆ = 8 2 - 4 . 2 . 6 = 16 ve 16 >0 olup farklı iki çözüm vardır. x 1 = ( - (-8) + √ 16 ) / 2 . 2 = ( 8 + 4 ) / 4 = 3 ve x 2 = ( - (-8) - √ 16 ) / 2 . 2 = ( 8 - 4 ) / 4 = 1 olur. Ç = { 1 , 3 }


SORU-2 :
2) x 2 + 4x -2 = 0 denkleminin kökleri x 1 ve x 2 dir. Kökleri x 1 + 3 ve x 2 + 3 olan denklemi bulunuz.

CEVAP-2 :
Denklemin kökler toplamı -4 / 1 = -4 ve kökler çarpımı (-2) / 1 = -2 dir. Kurmak istediğimiz denklemin kökler toplamı T = x 1 + 3 + x 2 + 3 = -4 + 6 = 2 dir. Kökler çarpımı ise Ç = ( x 1 + 3 ) . ( x 2 + 3 ) = x 1 . x 2 + 3 . ( x 1 + x 2 ) + 9 = -2 + 3 . (-4) + 9 = -5 olur. Denklem x 2 - Tx + Ç = 0 şeklindedir. x 2 - 2x - 5 = 0 aradığımız denklemdir.


SORU-3 :
3) x 2 + xy =12 denklem sistemini çözünüz.
xy + y 2 = 4


CEVAP-3 :
Birinci ve ikinci denklem taraf tarafa toplanırsa x 2 + 2xy + y 2 = 16 ve taraf tarafa çıkarılırsa x 2 - y 2 = 8 denklemleri elde edilir. ( x + y ) 2 = 16 ise x + y = 4 veya x + y = - 4 olacaktır.
x 2 - y 2 = 8 ifadesi x + y = 4 ve x + y = - 4 ifadeleriyle taraf tarafa ayrı ayrı bölünürse x - y = 2 ve x - y = -2 elde edilir.
x + y = 4 ve x + y = - 4 denklem sistemleri ayrı ayrı çözülürse x = 3 , y = 1 ve
x - y = 2 x - y = -2 x = -3 , y = -1 olur.
Ç = { (3 , 1) , (-3 , -1) }


alıntıdır

Medineweb 04 Ağustos 2012 22:10

Cevap: KPSS Matematik Konu Özeti
 
YAŞ PROBLEMLERİ
i) Bugünkü yaş x ise;
m yıl sonra : x + m
n yıl önce : x - n olur.

ii) m yıl önceki yaş x ise,
bugün : x + m
n yıl sonra : x + m + n olur.

Örnek: Bir annenin yaşı 56, üç çocuğunun yaşları toplamı 8'dir. Kaç yıl sonra, annenin yaşı üç çocuğunun yaşları toplamının 3 katı olur?
A) 2
B) 3
C) 4
D) 5
E) 6

Çözüm:
Bugün Anne 56 x yıl sonra: 56 + x
Uç çocuk 8 8 + 3x

Denklem: 56 + x = 3. (8 + 3x)
56 + x = 24 + 9x 8x = 32 x = 4 bulunur.
Doğru cevap (C) şıkkıdır.


Kar-Zarar Problemleri

Maliyet:100 %20 kar Satış:100+20=120
Maliyet:100 %20 İndirimli Satış: 100-20=80
İndirimli satışın üzerinden %20 karlı satış: 80.%120=(80.120):100=96

alıntıdır.

Medineweb 04 Ağustos 2012 22:10

Cevap: KPSS Matematik Konu Özeti
 
ORAN
a ve b reel sayılarının en az biri sıfırdan farklı olmak üzere, ye a nın b ye oranı denir.
  • Kesrin payı sıfır olabilir fakat paydası sıfır olamaz.

    Oranın payı ya da paydası sıfır olabilir.
    Oranlanan çoklukların birimleri aynı tür ya da aynı olmalıdır.
  • Oranın sonucu birimsizdir.
B. ORANTI

En az iki oranın eşitliğine orantı denir. Yani [Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...] oranı[ ye orantı denir.
ise, [ a ile d ye dışlar, b ile c ye içler denir.
C. ORANTININ ÖZELLİKLERİ
1) [ ise a.d= b.c

2)
[
3) m ile n den en az biri sıfırdan farklı olmak üzere,
[
4) a : b : c = x : y : z ise,

Burada, a = x . k
b = y . k
c = z . k dır.
D. ORANTI ÇEŞİTLERİ
1. Doğru Orantılı Çokluklar
Orantılı iki çokluktan biri artarken diğeri de aynı oranda artıyorsa ya da biri azalırken diğeri de aynı oranda azalıyorsa bu iki çokluk doğru orantılıdır denir.
x ile y doğru orantılı ve k pozitif bir doğru orantı sabiti olmak üzere, y = k . x ifadesine doğru orantının denklemi denir. Bu denklemin grafiği aşağıdaki gibidir.

  • İşçi sayısı ile üretilen ürün miktarı doğru orantılıdır.
  • Bir aracın hızı ile aldığı yol doğru orantılıdır.
2. Ters Orantılı Çokluklar

Orantılı iki çokluktan biri artarken diğeri aynı oranda azalıyorsa ya da biri artarken diğeri aynı oranda azalıyorsa bu iki çokluk ters orantılıdır denir.
x ile y ters orantılı ve k pozitif bir ters orantı sabiti olmak üzere, ifadesine ters orantının denklemi denir.
Bu denklemin grafiği aşağıdaki gibidir.

  • İşçi sayısı ile işin bitirilme süresi ters orantılıdır.
  • Bir aracın belli bir yolu aldığı zaman ile aracın hızı ters orantılıdır.
a, b ile doğru c ile ters orantılı ve k pozitif bir orantı sabiti olmak üzere,


E. ARİTMETİK ORTALAMA
n tane sayının aritmetik ortalaması bu n sayının toplamının n ye bölümüdür.
Buna göre, x1, x2, x3, ... , xn sayılarının aritmetik ortalaması,

  • a ile b nin aritmetik ortalaması

    a, b, c biçimindeki üç sayının aritmetik ortalaması,[
  • n tane sayının aritmetik ortalaması x olsun.
Bu n tane sayının herbiri; A ile çarpılır, B ilave edilirse oluşan yeni sayıların aritmetik ortalaması Ax + B olur.

F. GEOMETRİK ORTALAMA
n tane sayının geometrik ortalaması bu sayıların çarpımının n. dereceden köküdür.
Buna göre,
x1, x2, x3, ... , xn sayılarının geometrik ortalaması
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]
  • [CENTER][FONT=Trebuchet MS][SIZE=4]a ile b nin geometrik ortalaması (orta orantılısı)
  • a, b, c biçimindeki üç sayının geometrik ortalaması,

  • a ile b nin aritmetik ortalaması geometrik ortalamasına eşit ise a = b dir.
G. HARMONİK (AHENKLİ) ORTA

x1, x2, x3, ... , xn sayılarının harmonik ortalaması






  • a ile b nin harmonik ortalaması


  • a, b, c gibi üç sayının harmonik ortalaması


  • İki pozitif sayının aritmetik ortalaması A, geometrik ortalaması G ve harmonik ortalaması H ise,
i) G2 = A . H dır.

ii) H £ G £ A dır.
H. DÖRDÜNCÜ ORANTILI
[ orantısını sağlayan x sayısına a, b, c sayıları ile dördüncü orantılı olan sayı
denir.


alıntıdır.

Medineweb 04 Ağustos 2012 22:10

Cevap: KPSS Matematik Konu Özeti
 
Konu: Oran ve Orantı – Orantı Çeşitleri

1 kg elma 2 YTL ise 3 kg elma kaç YTL eder ?

Al sana bir Orantı sorusu.
Günlük hayatta bol bol orantı kullanıyoruz fakat haberimiz yok.

Yukarıdaki gibi çokluklar karşılaştırılıyorsa, bazı bilgiler verilip eksik bilgiler isateniyorsa buna Orantı denir.
Bu orantının iki çeşidi vardır.
Bunlar: Doğru Orantı ve Ters Orantı dır.

Bunları inceleyelim.

Doğru Orantı: Çokluklardan ( sayılardan ) biri artarken diğer sayı da artıyorsa veya biri azalırken diğeri de azalıyorsa buna doğru orantı denir.
Peki yukarıdaki tanımda anlatılmak istenen nedir ?

Örnek: 5 litre benzin ile 225 km giden araç 12 litre benzin ile kaç km yol gider ?

Orantının çeşidi: Doğru Orantıdır çünkü; benzinin litresi 5 ten 12 yer çıkmış, artma var. Buna karşılık 225 olarak gidilen yolun da artması gerekir. Yani; benzina rtmış, gidilen yol da artacak.

İşte bu şekilde biri artarken diğeri de artarsa, veya ikisi de azalırsa bunlara doğru orantı diyeceğiz.

Peki sonucu nasıl bulacağız ?
[Linkler Ziyaretçilere Kapalıdır.Giriş Yap Veya Üye Olmak için TIKLAYIN...]

yukarıda olduğu gibi aynı cinsler paya, diğer aynı cinsler de paydaya yazılır.

Litreler paya, alınan yollar da paydaya yazıldı.

Not: Doğru orantı dendiği zaman bölme işlemi aklımıza gelmeli.


Ters Orantı: İsminden de anlaşılacağı üzere ters bir durum söz konusu.
Çokluklardan biri artarken diğeri terslik yapıp azalıyorsa, veya biri azalırken diğeri artıyorsa buna TERS orantı denir.

Bir örnekle inceleyelim

Örnek: Bir tarlayı 3 traktör 15 saatte sürüyorsa 5 traktör kaç saatte sürer ?

Orantının çeşidi: Ters orantıdır, peki neden ?

3 traktör 15 saatte sürüyor, traktör sayısı 5 olduğunda traktör sayısında bir artış var. Bakalım saat de artacak mı ?

Bir düşünelim… Traktör sayısı artınca işimiz daha çabuk bitecektir ve zaman kısalacaktır.

Kısacası: Traktör sayısı arttı fakat zaman azalacak.

Bu tür orantılara TERS orantı diyeceğiz.

Peki ters orantı nasıl çözülür bir bakalım.

3.15=5.x

45=5.x

9=x

x=9 olarak bulundu.

Yani; 5 traktör tarlayı 9 saatte sürer. Mantıklısı da odur zaten.

Eğer doğru orantı gibi çözseydik;

3/15=5/x

içler dışlar yaparsak;

3x=75

x=25 oalrak bulunur.

Yani traktörler artınca tarla daha da geç sürülüyor…

Bu mantıklı mı sizce?

Sizce de mantıksızsa buna dopru orantıdır diyemeyiz.

Not: Ters orantı dendiği zaman çarpma işlemi aklımıza gelmeli.

alıntıdır.

Medineweb 04 Ağustos 2012 22:11

Cevap: KPSS Matematik Konu Özeti
 
Aritmetik ortalama ve açıklık

Aritmetik ortalama ve açıklık hesapları için elimizde birden fazla sayı olmalı.

Aritmetik ortalamayı siz öğrencilerimiz en çok ders notlarınızı hesaplarken kullanıyorsunuz.
Örneğin; Matematik dersinden kaç tane sınav olduysanız hepsini topluyorsunuz ve en son sınav sayısına bölüyorsunuz.
Veri: Elimizde kaç tane sayısal değer varsa bunların her birine veri denir.

Artirmetik ortalama = Tüm verilerin toplamı / veri sayısı

Açıklık ise elimizdeki verilerin ( sayıların ) içindekilerden en büyüğü ile en küçüğünün farkını alarak bulunur.

Açıklık= en büyük sayı - en küçük sayı

Örnek: Bir futbol takımında oynayan 11 oyuncunun yaşları aşağıdaki gibidir.

27,19,23,32,34,27,28,26,25,20,21

Buna göre bu oyuncuların yaşlarının aritmetik ortalamasını ve bu verilerin açıklığını bulunuz.

Toplam:282

Veri sayısı:11

Aritmetik ortalaması= toplam / veri sayısı

Aritmetik Ortalama = 282 / 11

Aritmetik Ortalama=25,6 olarak bulunur.

Açıklık= enbüyük sayı - en küçük sayı

En büyük sayı=34

En küçük sayı=19

Açıklık = 34-19=15

Açıklık= 15 olarak bulunur.
Geometrik Ortalama
Geometrik ortalama, birim değerlerinin (gözlem sonuçlarının) birbirleriyle çarpımlarının, n birim sayısı olmak üzere, n inci dereceden köküne denir.

Birim değerleri x1, x2, ... , xn gibi gösterilirse geometrik ortalama aşağıdaki gibi yazılır:


İstatistiksel araştırmalarda gözlem sonuçları arasındaki oransal (nispî) farkların mutlak farklardan daha önemli olduğu durumlarda geometrik ortalamaya başvurulur. Diğer bir ifade ile gözlem sonuçlarının her biri bir önceki gözlem sonucuna bağlı olarak değişiyorsa ve bu değişmenin hızı saptanmak istenirse geometrik ortalama sağlıklı sonuçlar verir. Geometrik ortalama kısaca G harfi ile gösterilir.

Geometrik ortalama bulmak veri değerlerinin pozitif olmasi gerekir. Eğer tek bir veri değeri sıfır ise geometrik ortalama anlamsız olur.
Harmonik Ortalama Harmonik ortalama, gözlem sonuçlarının (birim değerlerinin) terslerinin aritmetik ortalamasının tersidir.

Birim değerleri x1, x2, ... , xn gibi gösterilirse harmonik ortalama aşağıdaki gibi yazılır:


Harmonik ortalama genellikle, ekonomik olaylarda 1 birim ile alınan ortalama miktara veya bir mamülün bir biriminin üretimi için harcanan ortalamaya gereksinim duyulduğunda kullanılır. Harmonik ortalama kısaca H harfi ile gösterilir.

İki veri için harmonik ortalama [değiştir]Yalnız iki tane veri, (x1 ve x2 elde bulunursa, bunlar için harmonik ortalama H şöyle ifade edilebilir.


Bu halde bulunan harmonik ortalama, bu iki sayının aritmetik ortalamasına şöyle ilişkilidir;


ve bu iki verinin geometrik ortalamasi olan G ise


Bu harmonik ortalamaya şöyle ilişkilidir:
[

Böylece

[
olur. Bu demektir ki geometrik ortalama, aritmetik ortalama ve harmonik ortalama'nın geometrik ortalaması olur.

Ama çok dikkat edilmelidir ki bu sonuç yalnız ve yalnız iki veri için geçerli olur.


alıntıdır.

Medineweb 07 Mart 2014 19:39

Cevap: KPSS Matematik Konu Özeti
 
eşitsizlikle ilgili örnek bulabilirsem yayınlarım inş.bunlar bulabildiklerimdi..arkadaşlara burdan yazmış olayım:)


SAAT: 00:22

vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.

User Alert System provided by Advanced User Tagging v3.2.6 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306