www.medineweb.net, yükleniyor... 'den beri Kesintisiz Yayında....

Medineweb Forum/Huzur Adresi

Go Back   Medineweb Forum/Huzur Adresi > ..::.İMAM HATİP,KURAN KURSU-SEVİYE TESBİT-HACC-YURT DIŞI-DGS-ÖSYM-SINAVLARI.::. > Diyanetin Yeterlilik Sınavları > DGS (Dikey Geçiş Sınavı)

Konu Kimliği: Konu Sahibi Medineweb,Açılış Tarihi:  01 Ağustos 2012 (23:01), Konuya Son Cevap : 12 Nisan 2014 (13:56). Konuya 41 Mesaj yazıldı

Beğeni Aldı1Kez Beğenildi
Yeni Konu aç  Cevapla
 
LinkBack Seçenekler Değerlendirme
Alt 03 Ağustos 2012, 22:14   Mesaj No:21
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

[CENTER]Eşitsizlikler ve Mutlak Değer

x, y, z e R olmak üzere,

a) Eşitsizliklerin her iki tarafı aynı sayı ile toplanıp çıkarılabilir.
y Eşitsizliğin her iki tarafı aynı pozitif sayı ile çarpılıp veya bölünebilir.
d) Eşitsizliğin her iki tarafı negatif bir sayı ile çarpılıp bölündüğünde eşitsizlik yön değiştirir.
d) Yönleri aynı olan eşitsizlikler taraf tarafa toplanabilir.
e) Eşitsizliğin çözüm kümesi yazılırken, eşitlik varsa sayının kendisi dahil edilecek, eşitlik yoksa sayı dahil edilmeyecek.


MUTLAK DEĞER ÖZELLİKLLERİ VE İŞLEVLERİ

Tanım:Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile gösterilir.
x , R nin elemanıdır ve
x ={x, x > 0 ise
{-x,x < 0 ise
şeklinde tanımlanır.
f(x) ={f(x),f(x) > 0 ise
{-f(x),f(x)< 0 ise
1) Örnek: x =-3 için x-5 - x+2 ifadesinin eşiti kaçtır?

Çözüm: -3-5 - -3+2 = 8-1=7
2) Örnek: a 0,x elemanıdır R ve x < a ise -a a ise x > a veya x < -a dır.

10) IaI-IbI < Ia+bI
11)I-aI=IaI, Ia-bI=Ib-aI
12)IaI . IaI = a . a
13)I f(x) I = a ise f(x )= a veya f(x) = -a
14)I f(x) I < a ise -a< f(x) < a
15)I f(x) I > a ise f(x) > a U -f(x) > a

İSPATLAR
Öz.1)a = 0 ise IaI = I0I = 0
a > 0 ise IaI = a >0
a < 0 ise IaI = -a >0 dır.
O halde IaI > 0 dır.
Öz.2)a ve -a sayılarının 0 dan uzaklıkları eşit olduğundan IaI=I-aI dır.
Öz.6)V a elemanıdır R için -IaI < a < IaI
V b elemanıdır R için -IbI < b< IbI
+
-IaI-IbI< a+b 0 olduğundan -IaI < 0 dır.
-IaI= a 0 ise IaI = a ve -IaI < 0 dır.
-IaI< 0 < IaI = a ise -IaI < a < IaI dır.

MUTLAK DEĞERLİ DENKLEMLER
Soru: I3x-7I = 5 denklemini çözünüz.
Çözüm:I3x-7I = 5 ise; 3x-7 = 5 veya 3x-7 = -5 olur.
1-3x-7 = 5 2- 3x-7=-5
3x = 12 3x = 2
x = 4 x = 2/3
Ç={4,2/3}
Soru:Ix-7I = 7-x eşitliğini sağlayan kaç tane doğal sayı vardır?
Çözüm: Ix-7I = 7-x ise
[FONT=Tahoma][SIZE=4]x-7 [U]
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:15   Mesaj No:22
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

Mutlak Değer

TANIM

Sayı doğrusu üzerinde x reel (gerçel) sayısının orijine olan uzaklığına x in mutlak değeri denir.

|x| biçiminde gösterilir.
]



Bütün x gerçel (reel) sayıları için, |x| ³ 0 dır.




B. MUTLAK DEĞERİN ÖZELLİKLERİ

1) |x| = |– x| ve |a – b| = |b – a| dır.
2) |x . y| = |x| . |y|
3) |xn| = |x|n
4) y ¹ 0 olmak üzere,

5) |x| – |y| £ |x + y| £ |x| + |y|
6) a ³ 0 ve x Î IR olmak üzere,
|x| = a ise, x = a veya x = – a dır.
7) |x| = |y| ise, x = y veya x = – y dir.
8) x değişken a ve b sabit birer reel (gerçel) sayı olmak üzere,

|x – a| + |x – b|
ifadesinin en küçük değeri a £ x £ b koşuluna uygun bir x değeri için bulunan sonuçtur.
9) x değişken a ve b sabit birer reel (gerçel) sayı olmak üzere,

|x – a| – |x – b|
ifadesinin en küçük değeri x = a için, en büyük değeri ise x = b için bulunur.
10) a, pozitif sabit bir reel sayı olmak üzere,
  1. |x| < a ise, – a < x < a dır.
  2. |x| £ a ise, – a £ x £ a dır.
11) a, pozitif sabit bir reel sayı olmak üzere,
  1. |x| > a ise, x < – a veya x > a dır.
  2. |x| ³ a ise, x £ – a veya x ³ a dır.
alıntı[/CENTER]
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:15   Mesaj No:23
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

Üslü Sayılar


Üslü sayı, bir doğal sayının kendisi ile çarpımlarının kısa şekilde gösterilmesidir.


3.3=3² üs kuvvettaban n

Örnekler:

4.4.4=4³7.7.7.7=7410.10.10.10.10.10=106

Kurallar:
1)Bir sayıya üs yazılmamışsa üs 1’dir

3=3x 0=0¹ 45

2)Üssü 0 olan sayma sayıları 1’e eşittir.

4°=1 54°=1
1°=1 0°≠1

3)Üssü 1 olan sayılar tabana eşittir.

5¹=5 81¹=81
2¹=2 28¹=28

4)1 sayısının bütün kuvvetleri 1’dir.

1°=1 13635=1
1234731=1 1333=1

5)Üslü doğal sayılarda üs ile taban yer değiştirilirse sayının değeri de değişir.

(42 ve 24 hariç)

6)İki sayı birbirine eşit ve tabanları aynı ise bu iki sayının üsleri de eşittir. 3a=3b a=b


Üslü Sayılarla İşlem Yaparken

Pozitif tam sayıların tüm kuvvetleri pozitiftir.
Sıfır dışındaki tüm sayıların sıfırıncı kuvveti (+1) dir.
Sıfırın,sıfır dışındaki bütün kuvvetleri sıfırdır.
Negatif tam sayıların çift kuvvetleri pozitif, tek kuvvetleri negatiftir.
Negatif sayıların üstleri alınırken, üs parantez üstünde ise hem sayıyı hem işareti etkiler, işareti sayıyı etkilemez.

alıntı
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:16   Mesaj No:24
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

[CENTER]KAREKÖKLÜ SAYILAR

Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır.
Karesi 2 olan c doğal sayısını ele alalım.

a2 = 2 ise a sayısını a = şeklinde gösterebilir ve ‘karekök iki ‘diye okuyabiliriz.Acaba bu
sayısı hangi sayılar arasındadır?Bunu inceleyelim:
12 =1 1=1
(1,5)2 = 1,5 1,5=2.25 tir
O halde sayısı;1< 0)
Örnek:

( )4 = 4 = = 5.5 = 25


NOT: ( + ). ( - ) = ( )2 – ( )2 = a – b
Örnek:

( + ). ( - ) = ( )2 – ( )2 = 7-3 = 4




3)Bölme
Karekök içinde verilen sayılar bölünüp kök içine yazılır.Sadeleştirmeler yapılıp,mümkünse kök dışına çıkarılır.
a,b R+ ve b 0 ise / = ve / = dır.
Örnekler:

- / =
- : = = = /2
- / = =

PAYDAYI RASYONEL YAPMA

Bölüm şeklindeki kareköklü bir ifadede, paydayı karekökten kurtarmaya, paydayı rasyonel yapmak denir.Paydayı kökten kurtarmak için ;pay ve paydayı ,paydanın eşleniği ile çarparız.

nın eşleniği ve . =a dır.
( + ) nin eşleniği ( - ) ve ( + ). ( - ) = a – b dir.
( - ) nin eşleniği ( + ) dir.
( - b) nin eşleniği ( + b) dir.
- nin eşleniği 2 + + 2 dir.
+ nin eşleniği 2 - + 2 dir.
nin eşleniği dir.
m nin eşleniği n-m

1)Paydada varsa:
Pay ve paydayı ile çarparız.

Örnekler:

- 1/ = 1. / . = /2
- 5/ = 5. / . = /10 = / 2

2)Paydada + varsa :
Pay ve paydayı - ile çarparız.

Örnek:

5 5. (2 - )
=
( ). (2 - )

= 5. (2 - )
22 – ( )2

= 10 -

4 - 3

=10 - = 5(2 - )

BAZI KURALLAR:

1) n = an/m

2) = x , xm =a

3) . =

4) : =

5) - + = (a – b + c)

6) a > 0, b > 0, c > 0 m,n,k pozitif tam sayıdır.
2 . b = an

7) =

8) = 2. bk.c

9) =

10) =

11)( )n = a

12) ( )m = m

13) a R+ ise = n. b

14) p = =

15) =x ise x= 1+
2

16) =a+1

17) k =
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:16   Mesaj No:25
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

1. Birinci Dereceden Bir Bilinmeyenli Denklemler

Tanım : a * 0 ve a, b e R olmak üzere ax+b=0 denklemine, bilinmeyeni x olan "I. Dereceden Bir Bilinmeyenli Denklem" denir.
ax + b = O denkleminin çözümü için x yalnız bırakılmalıdır.

Örnek: 7x + 28 = O denkleminin çözüm kümesini bulalım.

Çözüm: 7x + 28 =0
7x =-28 x =-4 Ç -{-4}

Örnek: -2 . (3x + 1) + 4 . (2 - x) = 1 + 3 . (x + 1) denkleminin çözüm kümesini bulunuz.
Çözüm: -2 . (3x + 1) + 4 . (2 - x) = 1 + 3 . (x + 1)
-6x-2 + 8-4x = 1 +3x + 3
- 10x + 6 = 3x + 4
-13x = -2
x = 13

alıntı
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:16   Mesaj No:26
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

Birinci Dereceden Bir Bilinmeyenli Denklemler


İçinde bilinmeyen bulunan ve bilinmeyenin aldığı bazı değerler için doğru olan cebirsel eşitliklere denklem denir. Denklemleri adlandırırken içindeki bilinmeyen sayısına ve bilinmeyenin derecesi 1 olan denklemlere ise birinci dereceden bir bilinmeyenli denklemler denir.


Bu denklemlerin çözümü yapılırken;


Bilinmeyenler eşitliğin bir tarafında,bilinenler diğer tarafta toplanır.
Bir taraftan diğer tarafa ifade tersiyle aktarılır.örnek
x+2+4=10 10-4=6 6-2=4 x=4 yani Ç[4]olur.


Matematik ile ilgili bu madde bir taslaktır. İçeriğini geliştirerek Vikipedi'ye katkıda bulunabilirsiniz.


Pratik Çözüm


Bir denklemi pratik çözmek için ;


Bilinmeyenler eşitliğin bir yanında, bilinenler eşitliğin diğer yanında toplanır. Eşitliğin bir yanından diğer yanına geçen terimin işareti değişir.


Her iki yanda toplama çıkarma işlemleri yapılır ve her iki yan bilinmeyenin katsayısına bölünerek bilinmeyen yalnız bırakılır. Denklem çözülmüş olur.


ÖRNEKLER


1. x + 6 = 10 denkleminin çözüm kümesini bulalım:


Çözüm: x + 6 = 10 denkleminde (+6) nın toplama işlemine göre ters elemanı olan (-6), eşitliğin her iki yanına eklenirse eşitlik bozulmaz.


Buna göre; x + 6 = 10 x + 6 + (-6) = 10 + (-6) x + 0 = 4 x = 4 olur. Ç = {4} olur.


Verilen bir denklemin çözümünün doğru yapılıp yapılmadığının araştırılmasına, denklemin sağlaması denir.


Bulunan kök, denklemde yerine yazılarak denklemin sağlaması yapılır böylece bulunan kökün doğruluğu kontrol edilir.


4 sayısının x + 6 = 10 denklemini sağlayıp sağlamadığını kontrol edelim:


x = 4 için x + 6 = 10 4 + 6 =10 10 = 10 olduğundan çözüm doğrudur. x + 6 = 10 x = 10 – 6 x = 4 ve Ç = {4} tür.


Demek ki; her iki şekilde yapılan çözüm, aynı elemanı veren çözüm kümesidir.


2. Verilen denklem parantezli olursa; aşağıda yapıldığı gibi, önce dağılma özeliği uygulanarak parantezler kaldırılır. Sonra da içerisinde bilinmeyeni olan terimler eşitliğin bir tarafına, öteki terimler de diğer tarafına geçirilir. Gerekli işlemler yapılarak denklem çözülür.



2.(x + 3) + 7 = 25 – 2.( x - 2 )


Önce, çarpma işleminin toplama ve çıkarma işlemleri üzerine dağılma özeliklerini uygulayalım


Çözüm:


2.(x + 3) + 7 = 25 – 2.( x - 2 ) 2x + 6 + 7 = 25 – 2x + 4 2x + 13 = -2x + 29 2x + 2x = 29 – 13 4x = 16 x = 16 : 4 x = 4 ve Ç = { 4 } olur.


3. Verilen denklem kesirli olursa, çözümü için önce paydalar eşitlenir. Denklem paydadan kurtarılır. Bunun için, eşitliğin iki yanını ortak payda ile çarpmak gerekir. Sonra da örnek çözümlerde belirtilen kurallara göre denklem çözülür.


3.(x–2) _ 2–x _ _ x _ 5 denkleminin çözüm 4 2 ¯ 5 2 kümesini bulalım:


Çözüm: Paydaları eşitlersek:


3.( x- 2) – 2.( 2 – x ) – 4x _ x - 10 4 ¯ 4


3x – 6 – 4 + 2x – 4x =x – 10 3x + 2x – 4x – x = -10 + 6 + 4 5x - 5x = -10 + 10 0.x = 0


alıntı
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:16   Mesaj No:27
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

İkinci Dereceden Denklemler

İKİNCİ DERECE DENKLEMİ Babilliler, Mısırlılar ve Çinlilerde x + y = a ve x - y = b denklem çiftinde, yanlışı ılı memeyle x = (a + b)/2 ve y = (a-b)/2 olduğunu biliyorlardı.

Çinliler ayrıca matris bloklarını ve bambu çubukları kullanarak bu denklem sistemini çözebiliyorlardı. Daha sonraki gelen halklarda bu geometrik şekilleri kullanarak bu denklem sistemine sayısal çözümler bulmuşlardır. Eski halklarda sistemli bir ispat yöntemi bulunmadığından hu tür işlemler daha çok deneme biçiminde yürütülüyordu.
Çinlilerde de sistemli bir ispat yöntemi yoktu. Bunları söylerken, eski Babil, Mısır ve Çin anlatılıyor. Çinlilerin ikinci derece denklemine dönüşen problemleri Dokuz Bölüm isimli kitapta iki tane denklemle verilir. Bu denklemler arasında bilinmeyenin birisi yok edilerek sonuçta ikinci derece denklemi bulunur. Sonra denklem kendi yöntemleriyle çözülür.
Çinlilerin Dokuz Bölüm isimli kitabındaki 11. problem şöyledir. Bir kapının boyu eninden 6.8 birim daha fazladır. Kapının köşegeninin uzunluğu da 10 birimdir. Kapının enini ve boyunu hesaplayınız. Problemin ifadesine göre boyutlar x ve y ise x-y = 6.8 ve x2 + y2=100 denklem çifti yazılır. Çinliler bu problemi daha çok Pisagor yöntemiyle çözerler.
Eğer bu problemi biz x - y = d ve x2 + y2 = c2 biçiminde yazarsak, (x + y)2 = 4xy + (x - y)2 ve c2 = 2xy+(x - y)2 yada 4xy = 2c2 - 2(x - y)2 yazılır. Buradan (x + y)2 = 2c2-(x - y)2 ya da x+y= yazılır.
Eşitliğin her iki yanı 2 sayısıyla bölünürse, olur.
Buradan x +y = 12.4 gelir. x-y = 6.8 olarak verilmişti.
Buradan x = 9.6 ve y = 2.8 olarak bulunur. Çinlilerin Dokuz Bölüm isimli kitaplardaki problemler daha çok doğrusal ve ikinci derece olan denklem sistemleri biçimlerine dönüşür. Bu tür örnekler Çinlilerde fazladır. Oysa Eski Babillilerdeki tabletler x + y = b ve xy = c biçimlere dönüşen problemlerle doludur. Babillilerin problemleri daha çok alan ve çevre türünde düzenlenmiştir.
Alanı c ve çevresi 2b olan çok sayıda Babil tableti bulunmuştur. Bu tabletler x = b/2 + z ve y = b/2 - z boyutlu dikdörtgen ve c alanı t. . (b/2 + z) (b/2 - z) = (b/2)2 - z2 biçiminde alınarak hesaplar yapılmıştır.
Bu hesaplamalara göre olur. Buradan ve y = değerleri istenilen denklem sisteminin çözümüdür. Burada yazdığımız modern gösterimler, Babillilerin tabletlerinde yapılan çözümlerin yorumlanması ve açıklanması türendedir. Babilliler aslında formül vermemişlerdir. Her problemi çözerken çözümde kullandıkları yöntemler bunlardır. Babilli yazıcılar bu işlemi geometrik olarak nasıl yapmışlar ve nasıl tabletlere geçirmişlerdir? Şimdi onu gösterelim.
Yine x + y = b ve xy = c olarak verilsin. Burada x değerine uzun kenar ve y değerine de kısa kenar diyorlar. Daha kısa deyimle x uzunluk ve y de genişlik olarak alınıyor. Buna göre problemin ifadesinden genel olarak x + y = b ve xy = c gösterimleri geliyor. Modern dille bu iki denklem sisteminden uzunluk denen x ve genişlik denen y değeri hesaplanacak.
Bu hesaplamaları geometrik olarak şu şekle dayandırıyorlar. Yani komutlarından böyle yaptıkları anlaşılıyor. Önce b sayısını ikiye bölüyor ve b/2 kenarlı kareyi çiziyor. Burada b/2 = x - (x - y)/2 = y + (x - y)/2 biçiminde ve b/2 = (x + y)/2 olduğundan, b/2 kenarlı karenin üa-nı xy = c alanından (x - y)/2 kenarlı karenin alanı kadar daha fazladır. Yani, x+y=b ve xy=c olan denklem sisteminin çözümünün geometrik yorumu olur. Yukarıdaki şekle göre b/2 sayısına sayısını bir kez ekler ve bir kez de çıkarırsak sırasıyla

SORU-1 :
SORULAR
1)2x 2 - 8x + 6 = 0 denklemini çözünüz.


CEVAP-1 :
∆ = 8 2 - 4 . 2 . 6 = 16 ve 16 >0 olup farklı iki çözüm vardır. x 1 = ( - (-8) + √ 16 ) / 2 . 2 = ( 8 + 4 ) / 4 = 3 ve x 2 = ( - (-8) - √ 16 ) / 2 . 2 = ( 8 - 4 ) / 4 = 1 olur. Ç = { 1 , 3 }


SORU-2 :
2) x 2 + 4x -2 = 0 denkleminin kökleri x 1 ve x 2 dir. Kökleri x 1 + 3 ve x 2 + 3 olan denklemi bulunuz.

CEVAP-2 :
Denklemin kökler toplamı -4 / 1 = -4 ve kökler çarpımı (-2) / 1 = -2 dir. Kurmak istediğimiz denklemin kökler toplamı T = x 1 + 3 + x 2 + 3 = -4 + 6 = 2 dir. Kökler çarpımı ise Ç = ( x 1 + 3 ) . ( x 2 + 3 ) = x 1 . x 2 + 3 . ( x 1 + x 2 ) + 9 = -2 + 3 . (-4) + 9 = -5 olur. Denklem x 2 - Tx + Ç = 0 şeklindedir. x 2 - 2x - 5 = 0 aradığımız denklemdir.


SORU-3 :
3) x 2 + xy =12 denklem sistemini çözünüz.
xy + y 2 = 4


CEVAP-3 :
Birinci ve ikinci denklem taraf tarafa toplanırsa x 2 + 2xy + y 2 = 16 ve taraf tarafa çıkarılırsa x 2 - y 2 = 8 denklemleri elde edilir. ( x + y ) 2 = 16 ise x + y = 4 veya x + y = - 4 olacaktır.
x 2 - y 2 = 8 ifadesi x + y = 4 ve x + y = - 4 ifadeleriyle taraf tarafa ayrı ayrı bölünürse x - y = 2 ve x - y = -2 elde edilir.
x + y = 4 ve x + y = - 4 denklem sistemleri ayrı ayrı çözülürse x = 3 , y = 1 ve
x - y = 2 x - y = -2 x = -3 , y = -1 olur.
Ç = { (3 , 1) , (-3 , -1) }

alıntı
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:16   Mesaj No:28
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

Birinci Dereceden İki Bilinmeyenli Denklem Sistemleri

a, b, c, a,, bv c, e R olmak üzere ax + by + c = 0 a^ + + e, = 0
biçimindeki iki denkleme birinci dereceden iki bilinmeyenli denklem sistemi denir. Çözüm kümesi bulunurken yok etme, yerine koyma gibi yöntemler kullanılır.

a. Yok Etme Metodu
Bu yöntemde denklem sisteminde bulunan bilinmeyenlerden birinin katsayılarını zıt olarak eşitler, denklemleri taraf tarafa toplarız. Böylece bilinmeyenlerden biri yok edilir. Elde edilen bir bilinmeyenli denklem çözülür ve bilinmeyenlerden biri bulunur. Bulunan değer, denklemlerden birinde yazılır ve diğer bilinmeyen bulunur.

Örnek: 4x - 5y = 31 denklem sisteminin çözüm 2x + y = 5 kümesini yok etme metoduyla bulalım.

Çözüm: 4x - 5y = 3
-2. / 2x + y = 5

(İkinci denklem -2 ile çarpılır.)
Yerine Koyma Metodu
Denklemlerden birinde bilinmeyenlerden biri, diğeri cinsinden bulunur ve diğer denklemde yerine yazılarak elde edilen denklem çözülür. Bulunan değer denklemlerden herhangi birinde yerine yazılarak diğer bilinmeyen bulunur.

Örnek: 4x - 5y = 3 j denklem sisteminin çözüm 2x + y = 5 ' kümesini yerine koyma metodu ile bulunuz.

Çözüm:2x + y = 5 => y = 5-2x
4x - 5y = 3 => 4x - 5 . (5 - 2x ) = 3 4x-25+ 10x = 3 14x = 28 x = 2
y = 5 - 2x denkleminde x = 2 yazılırsa y = 5 - 2 . 2 = 1 bulunur.
Ç = {(2, 1)}

alıntı
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:17   Mesaj No:29
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

SAYI PROBLEMLERİ

A. PROBLEM ÇÖZME YÖNTEMİ

Denklem kurma ile ilgili soruları çözerken aşağıda anlatılan yöntemin kullanılması sorularda kolaylık sağlayacaktır.

1. adım :
2. adım :
3. adım :
4. adım :

5. adım : Soruda verilenler belirlenir.
Soruda istenen tesbit edilir.
Soruda verilenler matematik diline çevrilir.

3. adımda elde edilen denklemler, denklem çözme metotlarından yararlanılarak çözülür.
Bulunan sonucun, soruda istenen olup olmadığı kontrol edilir.

B. MATEMATİK DİLİNE ÇEVİRME
Sorularda verilen ifadelerin matematik diline çevrilmesini örneklerle açıklayalım.

Herhangi bir sayı x olsun :
ä Bir sayının 7 fazlası, x + 7 dir.
ä Bir sayının 5 eksiğinin yarısı,
ä Bir sayının yarısının 3 eksiği,
ä Bir sayının 2 katının 5 fazlası, 2x + 5 tir.
ä Bir sayının 3 fazlasının 4 katı, 4 . (x + 3) tür.
ä Bir sayının 8 eksiğinin 3 katının 7 fazlası, 3 . (x – 8) + 7 dir.
ä Payı paydasının 2 katının 4 eksiğine eşit olan kesir,
ä Bir sayının sinin ünün
ä Bir sayının ünün toplamı,

Denklem Kurma Problemlerinin (Sayı, Kesir, Yaş, İşçi-Havuz, Hareket, Yüzde, Faiz ve Karışım) daha iyi anlaşılabilmesi için bu konuların başlarına konuyla ilgili örnekler konmuştur. Bu örnekleri incelemeniz konuyu anlamanızı kolaylaştıracaktır.


Örnek 1
Biri diğerinin 3 katından 4 fazla olan iki doğal sayının farkı 80 dir. Buna göre, bu iki sayının toplamları kaçtır?

A) 132 B) 156 C) 160 D) 182

Çözüm
Küçük sayı  x
Büyük sayı  3x + 4
Farkları  3x + 4 – x = 2x + 4 olur.
2x + 4 =
2x =
x =
x = 80
76
76 : 2
38 (küçük sayı)
Büyük sayı  3x + 4 = 3 . 38 + 4 = 118
Toplamları  118 + 38 = 156 olur.
Cevap B


Örnek 2
Ardışık dört çift sayının toplamı 372 dir. Bu sayıların en büyüğü kaçtır?

A) 36 B) 56 C) 68 D) 96

Çözüm
l. sayı x
ll. sayı x + 2
lll. sayı x + 4
lV. sayı x + 6
+
Toplam =
4x =
x = 4x + 12 = 372
372 – 12 = 360
360 : 4 = 90
lV. sayı  x + 6 = 90 + 6 = 96 olur.
Cevap D

Örnek 3
Bir yemek kuyruğunda Ali sıranın tam başında, Orhan ise tam ortasındadır. Ali ile Orhan arasında 12 kişi olduğuna göre, bu yemek sırasında kaç kişi vardır?

A) 27 B) 28 C) 29 D) 30

Çözüm

Ali ile Orhan arasında 12 kişi varsa Orhan’ın önünde 12 + 1 = 13 kişi ve arkasında 13 kişi vardır. Orhan sıranın tam ortasında olduğuna göre 13 önünde, 13 arkasında, 1 de kendisi
Toplam  13 + 13 + 1 = 27 kişi vardır.
Cevap A

Örnek 4
120 tane cevizi Bürge 2 pay, Berkin 3 pay alacak şekilde paylaşıyorlar.
Buna göre, Bürge kaç ceviz almıştır?

A) 28 B) 30 C) 48 D) 50

Çözüm
l. yol :
Bürge  2 pay
Berkin  3 pay
Toplam  5 pay = 120
120 : 5 = 24 (1 pay)
Bürge  2 pay  24 x 2 = 48 tane almıştır.

ll. yol :
Bürge  2x Berkin  3x
2x + 3x =
5x = 120
120 ise,
x = 120 : 5 = 24 olur.
Bürge  2x = 2 . 24 = 48 tane almıştır.
Cevap C

Örnek 5
Bir öğrenci tanesi 5000 ve 6000 liralık silgilerden 10 tane alarak 56 000 lira ödüyor.
Bu öğrenci silgilerin kaç tanesini 5000 liradan almıştır?

A) 4 B) 5 C) 6 D) 7

Çözüm
5000 liralık

x tane 6000 liralık

(10 – x) tane

5000x + 6000.(10 – x) =
5000x + 60 000 – 6000x =
60 000 – 56 000 =
4 000 =
x = 56 000 lira
56 000
1000x
1000x
4 olur.
Cevap A


Örnek 6
10 kişilik bir arkadaş grubu eşit katılımla top almaya karar veriyorlar. Fakat içlerinden 3 kişi vazgeçince diğerleri 30 000 er lira fazla ödüyor.
Buna göre, topun fiyatı kaç liradır?

A) 500 000 B) 560 000 C) 700 000 D) 840 000

Çözüm
l. yol :
10 – 3 = 7 kişi (geriye kalanlar)
7 x 30 000 = 210 000 lira (3 kişi yerine)
210 000 : 3 = 70 000 lira (1 kişinin ödemesi gereken)
10 x 70 000 = 700 000 lira olur. (topun fiyatı)

ll. yol :
Bir kişinin ödediği miktar  x
Topun fiyatı  T olsun;
10 . x = T
7 . (x + 30 000) = T
10x = T
7x + 210 000 = T

10x =
10x – 7x =
3x =

7x + 210 000
210 000
210 000 ise, x = 70 000 liradır.
T = 10x olduğundan
T = 10 . 70 000 = 700 000 lira olur.
Cevap C

alıntı
Alıntı ile Cevapla
Alt 03 Ağustos 2012, 22:17   Mesaj No:30
Medineweb Emekdarı
Medineweb - ait Kullanıcı Resmi (Avatar)
Durumu:Medineweb isimli Üye şimdilik offline konumundadır
Medine No : 13301
Üyelik T.: 04 Şubat 2011
Arkadaşları:5
Cinsiyet:erkek
Yaş:38
Mesaj : 4.831
Konular: 926
Beğenildi:344
Beğendi:0
Takdirleri:62
Takdir Et:
Konu Bu  Üyemize Aittir!
Standart Cevap: DGS Matematik Dersi Konu Özetleri

YAŞ PROBLEMLERİ


i) Bugünkü yaş x ise;
m yıl sonra : x + m
n yıl önce : x - n olur.

ii) m yıl önceki yaş x ise,
bugün : x + m
n yıl sonra : x + m + n olur.

Örnek: Bir annenin yaşı 56, üç çocuğunun yaşları toplamı 8'dir. Kaç yıl sonra, annenin yaşı üç çocuğunun yaşları toplamının 3 katı olur?
A) 2
B) 3
C) 4
D) 5
E) 6

Çözüm:
Bugün Anne 56 x yıl sonra: 56 + x
Uç çocuk 8 8 + 3x

Denklem: 56 + x = 3. (8 + 3x)
56 + x = 24 + 9x 8x = 32 x = 4 bulunur.
Doğru cevap (C) şıkkıdır.


alıntı
Alıntı ile Cevapla
Cevapla


Konuyu Toplam 1 Kişi okuyor. (0 Üye ve 1 Misafir)
 

Benzer Konular
Konu Başlıkları Konuyu Başlatan

Medineweb Ana Kategoriler

Cevaplar Son Mesajlar
KPSS Vatandaşlık Dersi Konu Özetleri Medineweb Vatandaşlık 12 30 Ekim 2018 09:55
DGS Türkçe Dersi Konu Özetleri Medineweb DGS (Dikey Geçiş Sınavı) 8 21 Mayıs 2017 22:13
kelama giriş dersi konu özetleri makbergülü Kelama Giriş 0 17 Şubat 2013 16:01
KPSS Coğrafya Dersi Konu Özetleri Medineweb Coğrafya 35 05 Ağustos 2012 22:29
DGS Geometri Dersi Konu Özetleri Medineweb DGS (Dikey Geçiş Sınavı) 9 03 Ağustos 2012 22:07

Bir Ayet Bir Hadis Bir Söz | www.kaabalive.net Bir Ayet Bir Hadis Bir Söz | www.medineweb.net Yeni Sayfa 1
.::. Bir Ayet-Kerime .::. .::. Bir Hadis-i Şerif .::. .::. Bir Vecize .::.
 
text = new text(); number = 0; // textArray text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Dosdoğru namazı kılın, zekatı verin ve elçiye itaat edin. Umulur ki, rahmete kavuşturulmuş olursunuz. (Nur-56)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Andolsun, Biz gökleri, yeri ve ikisi arasında bulunanları altı günde yarattık; Bize hiç bir yorgunluk dokunmadı. (kâf-38)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah, gece ile gündüzü evirip çevirir. Gerçekten bunda basiret sahipleri için birer ibret vardır. (nur-44)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Ey iman edenler, Allah'tan sakının ve doğru (sadık)larla birlikte olun. (tevbe-119"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Yine de Allah'a tevbe edip bağışlanma istemeyecekler mi? Oysa Allah bağışlayandır, esirgeyendir. (Maide-74)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Andolsun, sizi yeryüzünde yerleşik kıldık ve orda size geçimlikler yarattık. Ne az şükrediyorsunuz? (A'raf-10)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah'a karşı yalan uydurup iftira düzenden veya O'nun ayetlerini yalanlayandan daha zalim kimdir? Hiç şüphesiz o zalimler kurtuluşa eremezler. (Enam-21)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Hiç şüphesiz, zikri (Kur'an'ı) biz indirdik biz; onun koruyucuları da gerçekten biziz. (Hicr-9)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Diri olanlarla ölüler de bir değildir. Gerçekten Allah, dilediğine işittirir; sen ise kabirlerde olanlara işittirecek değilsin. (Fatır-22)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah'ın ayetlerini ve O'na kavuşmayı 'yok sayıp inkâr edenler'; işte onlar, benim rahmetimden umut kesmişlerdir; ve işte onlar, acı azab onlarındır. (Ankebut-23)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Hamd, göklerde ve yerde olanların tümü kendisine ait olan Allah'ındır; ahirette de hamd O'nundur. O, hüküm ve hikmet sahibidir, haber alandır. (sebe-1)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Rabbimiz, şüphesiz Sen, bizim saklı tuttuklarımızı da, açığa vurduklarımızı da bilirsin. Yerde ve gökte hiç bir şey Allah a gizli kalmaz.(İbrahim-38)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم İslam'a çağrıldığı halde, Allah'a karşı yalan uyduranlardan daha zalim kimdir? Allah, zalim bir kavmi hidayete erdirmez. (Saf-7)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Ey iman edenler, cuma günü namaz için çağrı yapıldığı zaman, hemen Allah'ı zikretmeye koşun ve alış-verişi bırakın. Eğer bilirseniz, bu sizin için daha hayırlıdır. (Cum'a-9)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Göklerde ve yerde olanların tümü Allah'ı tesbih eder. Mülk O'nundur, hamd (övgü) de O'nundur. O, her şeye güç yetirendir. (Tegabun-1)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم O, yarattığını bilmez mi O, Latif'tir Habir dir. (Mülk-14)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Doğrusu, muttaki olanlar için Rableri katında nimetlerle donatılmış cennetler vardır. (Kalem-34)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah a kulluk edin, O ndan korkun ve bana itaat edin.(Nuh-3)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah dilemedikçe siz dileyemezsiniz. Gerçekten Allah, bilendir, hüküm ve hikmet sahibidir. (İnsan-30)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Gerçekten Biz sizi yakın bir azab ile uyardık. Kişinin kendi ellerinin önceden takdim ettiklerine bakacağı gün, kafir olan da Ah, keşke ben bir toprak oluverseydim diyecek. (Nebe-40)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Gerçekten bundan 'içi titreyerek korkacak kimse için elbette bir ibret (ders) vardır. (Naziat-26)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Hiç bir nefsin bir başka nefse herhangi bir şeye güç yetiremeyeceği gündür; o gün emir yalnızca Allah'ındır.(İnfitar-19)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Ey insanlar, sizi ve sizden öncekileri yaratan Rabbinize kulluk edin ki sakınasınız.(Bakara-21)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم De ki Yeryüzünde gezip dolaşın, sonra yalanlayanların sonu nasıl oldu, bir görün.(Enam-11)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم De ki Şüphesiz benim namazım, ibadetlerim, dirimim ve ölümüm alemlerin Rabbi olan Allah ındır.(Enam-162)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Onlar Rabbimiz şüphesiz biz iman ettik, artık bizim günahlarımızı bağışla ve bizi ateşin azabından koru diyenler (Ali imran-16)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Ey İman edenler! Allah'tan korkun. Herkes yarına ne hazırlayıp gönderdiğine bir baksın...(Haşr-18)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم İnkar edenlerin, bizi yeryüzünde aciz bırakacaklarını sanmayasın. Varacakları yer ateştir. Ne kötü dönüştür?(Nur-57)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Mü'minlerin kalblerine Allah'ın zikriyle Allah korkusundan dolması zamanı gelmedi mi?...(Hadid-16)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Hiç şüphe yok ki Allah onların gizlediklerini de açıkladıklarını da bilir.(Nahl-23)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Alemlerin Rabbi olan Allah dilemedikçe siz dileyemezsiniz.(Tekvir-29)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Ey insanlar! Allah'a ve peygamberine iman edip Allah yolunda mallarını harcayanlar için büyük bir mükafat vardır.(Hadid-7)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Sözünüzü ister gizleyin, ister açığa vurun. Şüphesiz Allah, kalblerin özünü iyi bilir.(Mülk-13)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Cehenneme her topluluk atıldığında Zebaniler onlara:Size bir uyarıcı gelmemiş miydi? diye soracaklardır.(Mülk-8)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم İnanıp yararlı iş işleyenlerin kötülüklerini and olsun ki örteriz, onları yaptıklarından daha güzeli ile mükafatlandırırız.(Ankebut-7)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Ey Muhammed de ki:İbadetiniz (duanız, imanınız) olmasa Rabbim size ne diye değer versin? (Furkan-77)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Şüphesiz bir millet kendilerindeki iyi hali değiştirmedikçe Allah da onlara verdiği nimeti değiştirmez.(Ra'd-11)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah'ı unutan, Allah'ın da kendilerini, kendilerine unutturduğu kimseler gibi olmayın. İşte doğru yoldan çıkanlar bunlardır.(Haşr-19)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم ...Namaz kılınız, muhakkak ki namaz, insanları kötülüklerden ve inkara sapmaktan korur...(Ankebut-45)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Mal biriktiren ve onu sayıp duran ve insanları sözle ve işaretle ayıplayanın vay haline!(Hümeze-1)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Beni zikrediniz, anınız ki ben de siz anayım. Bana şükredin ve nankörlük etmeyin.(Bakara-152)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Şüphesiz ki Allah, cihad eden mü'minlerin canlarını ve mallarını cennet karşılığında satın almıştır.(Tevbe-111)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Kimse kimsenin günahını yüklenemez.(Necm-38)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Yaptıkları günahları insanlardan gizlerler de Allah'tan gizlemezler.(Nisa-108)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم O sizi karanlıktan nura çıkarmak için üzerinize melekleriyle beraber rahmet edendir. O mü'minleri çok esirgeyicidir.(Ahzab-43)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم İnsan görmedi mi ki; Biz kendisini bir nutfeden yarattık. Şimdi açıkça bir düşman kesiliverdi.(Yasin-77)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم ...Ecelleri geldiği zaman onu ne bir an geri bırakabilirler, ne de ileri alabilirler.(A'raf-34)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah yolunda öldürülenleri sakın ölüler zannetmeyin. Bilakis onlar diridirler. Rableri katından rızıklandırıl maktadırlar.(Al-i İmran-169)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Onlar ayakta iken, otururken ve yanları üstüne yatarken Allah'ı zikrederler.(Al-i İmran-191)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah'tan bağışlanmanı iste. Şüphesiz ki Allah Gafurdur, Rahimdir.(Nisa-106)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Onlar ağızlarıyla Allah'ın nurunu söndürmek isterler. Kafirler istemese de Allah nurunu mutlaka tamamlayacaktır.(Tevbe-32)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Şüphe yok ki siz, mallarınız ve canlarınız hususunda imtihan olacaksınız...(Al-i İmran-186)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Nerede olursanız olun ölüm sizi yakalar. Sağlam yapılmış kalelerde bulunsanız bile...(Nisa-78)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Ey iman edenler! Allah'tan korkun. Sadıklarla birlikte olun.(Tevbe-119)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Muhakkak ki insan Rabbine karşı pek nankördür.(Adiyat-6)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Allah'ı nefsinde, içinde huşu ve korku ile an, gece ve gündüz, açık ve gizli onu zikret, sakın gafillerden olma.(A'raf-205) "; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم İçinizden mücahede edenler, sabır gösterenler belli oluncaya kadar elbette sizi deneriz.(Muhammed-31)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Onların tümünü toplayacağımız gün; sonra şirk koşanlara diyeceğiz ki:'Nerede (o bir şey) sanıp da ortak koştuklarınız?'.(En'am 22)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Hani Lukman oğluna -öğüt vererek- demişti ki; 'Ey oğlum, Allah'a şirk koşma. Şüphesiz şirk, gerçekten büyük bir zulümdür.(Lokman 13)"; text[number++] = "أعوذ بالله من الشيطان الرجيم , بسم الله الرحمن الرحيم Biz insana anne ve babasını (onlara iyilikle davranmayı) tavsiye ettik. Annesi onu, zorluk üstüne zorlukla (karnında) taşımıştır. Onun (sütten) ayrılması, iki yıl içindedir.Hem Bana, hem anne ve babana şükret, dönüş yalnız Banadır.(Lokman 14)"; // keep adding items here... increment = Math.floor(Math.random() * number); document.write(text[increment]); //-->    

 

 Medineweb Sosyal Medya Gruplarımız:  Medineweb  Medineweb  Medineweb  Medineweb Medineweb     

  www.alemdarhost.com sunucularını Kullanıyoruz.